K46 CW Modem # with WinKeyer3 Controller # **User Manual** www.k1el.com Revision A1.0 (Preliminary) November 23, 2024 # Introduction The K46 is the latest member of the K1EL CW Keyboard product line which started with the K20 in 1997. It incorporates a CW reader and has both USB keyboard and USB host interfaces. Two separate CW output ports are provided that can key almost any transmitter. The K46 is functionally equivalent to the K45 with two hardware differences. The LCD is twice the size of the K45 and both an audio splitter and sinewave sidetone modules are included on the main board. Like the K45, the K46 uses the CH340 USB interface. The K46 is housed in a custom all-metal enclosure with a flat pancake design which allows maximum flexibility. A rotary encoder / push switch provides user input. The unit is powered by a USB power source such as a USB charger, USB battery, or USB port on a PC or laptop. The K46 draws low current, about 150 mA, so a standard phone charger will work fine. #### List of K46 features - WinKeyer mode allows the K46 to connect to a PC logging or contest application - 8 Line by 21 character LCD display with adjustable backlight and contrast. - Multi-function top line status display - Separate receive and transmit display windows with scrolling and optional word wrap - A real time transmit progress window can be displayed instantly by hot key (Windows Key) - USB Type A keyboard connector for use with a standard wired or wireless USB keyboard - Mini-B USB connector for connection to a host PC or power source - Modern DSP based CW reader with adjustable gain, spacing, threshold, and noise filter - CW Reader speed operates from 7 to 60 WPM - 1/8" audio input jack for CW reader input which can be connected to receiver speaker output - 1/8" speaker output which can be connected to a speaker or headphones - 1/8" stereo key output jack provides two optically isolated outputs for CW transmitter keying - These keying outputs can be configured as two ports or a single port with PTT - In addition, the keying ports employ solid state relays that can key up to +/- 350 volts at 120 mA - 1/8-inch audio jack for sinewave sidetone audio output to drive an external speaker or headphones - 1/8-inch iambic or single lever paddle input that also supports straight key input - Rotary encoder input with integral push switch - On board sidetone speaker with adjustable volume and pitch - ESD input protection and RFI suppression on all connectors - Transmit keving speed range of 5 to 99 WPM. - Two complete user setups with message, configuration storage, and twelve 140 character messages - Twelve messages of 140 characters for each of two users - lambic A, B, and Ultimatic paddle modes supported - Adjustable letterspace, wordspace, weight, compensation, and dit/dah ratio - Adjustable PTT lead-in, tail, and paddle hang times - Firmware can be upgraded over USB - User display interface can be exported to a PC application (K46Display.exe) for remote control #### LCD Display A high quality 21 by 8 LCD character display is used. The characters are large, well lit, and very easy to read. By employing an easy to use scrolling and windowing design, the display is used efficiently, and provides the user with many viewing options. Display brightness and contrast are adjustable. # **Status Line** The top line of the display is used for status feedback to the user: Figure 1 - K46 Display Status Line Description of the elements contained in the status line as shown in Figure 1: - 1) Decoded Rx Morse input speed in WPM - 2) Receive Window selection indicator, shown when receive window is viewed - 3) Real time signal amplitude bar graph with overload indication. Used for CWR tuning - 4) User number indicator (1,2,3,4) - 5) **G**=GUI Mode on, **D**=CWR Stream on - 6) Transmit hold (pause) status indicator (flashing H) - 7) B=K46 Transmit Busy, P=Paddle Transmit active, W=Message Wait - 8) Message wait indicator (flashing W) - Transmit Window selection indicator, shown when transmit window is viewed. - 10) Transmit speed in WPM #### Flash Status indicators Several important status indicators briefly overwrite the normal status to indicate status or mode changes. The indicator will automatically clear, and normal status will return after a few seconds. Some of these indicators are: - 1) Parameter change by hot key - 2) ESC has been pressed and the K46 is waiting for a command entry - 3) BEG or END of a scrolled window - 4) CLL indicates a callsign grab is in process - 5) TXF indicates transmit buffer isl The seven text lines below the status line are used for receive and transmit character display as well as configuration menus and help displays. #### CW Reader Module (CWR) A very good CW reader function is built into the K46. Morse audio from a receiver is fed into the CWR which then detects, decodes, and displays it on the LCD display. There are four CWR settings available to the user to adjust gain, noise filtering, character spacing, and signal level thresholding. These settings can be adjusted in the configuration menu, special "hot" keys, or by rotary encoder. The CWR is described further in the K46 Quick Start section starting on 32. ## **K46 Window Modes** There are two main display windows; a transmit window and a receive window. The transmit window shows letters as they are entered on the keyboard. The receive window show letters as they are received by and decoded by the CWR. The transmit display buffer holds 32 lines (640 letters) and the receive buffer holds 96 lines (2000 letters). An underline cursor is shown in the transmit window only. In both windows, once entry reaches the end of a line, the display is automatically scrolled up and text continues on the new line. An optional word wrap mode can be enabled to break the line at word boundaries (this setting is in Configuration Menu #5) If word wrap has been enabled then an entire word will be carried over to the new line. Enabling word wrap applies to both Rx and Tx windows. It is easy to toggle between receive and transmit windows using the TAB key and it's easy to identify which window is active by two arrows displayed on the status line. When the Rx window is displayed, a left arrow will point to Rx WPM on the left side. When the transmit window is active a right arrow will point to Tx WPM on the right side. Another clue is that only the transmit window has a visible blinking cursor marking the text insertion point. In general operation, the user monitors incoming activity on the receive window and switches over to the Tx window to enter text to transmit. # ASR (Automatic Send/Receive) When ASR mode is active (Config Menu #3) the display is toggled to the transmit window automatically while typing and then will return to the receive window after the text is sent. If the user selects the Tx window with the TAB key in ASR mode, the display will lock on Tx until TAB is entered again. #### **Fast Tx View** In normal operation, the user types ahead of the current transmit position or to queue up a long message. Since the Transmit window does not show transmit progress, Fast Tx View is provided to display a real time view of what the K46 is transmitting. The user presses either the Windows key (this key is usually located between the CTL and ALT keys) or SHIFT-CTL and Tx view is activated. When the key is released, the display goes back to the previous window. Fast Tx View is only available while viewing either the Rx or Tx windows and is ignored while configuration menus, or CW practice. To provide maximum screen density, word wrap is disabled in fast view. Fast View only shows the last seven transmitted lines, back scrolling is not supported. # Display Window Adjustment Keys (apply to Rx and Tx windows only) #### **PGDN - Scroll Window Down** The current display window is scrolled down so that older text can be viewed. Even though the active text insertion position may be out of view, the display is updated in the background so that incoming text is not missed. **BEG** will be flashed on the status line when trying to scroll before the start of a window buffer. # **PGUP - Scroll Window Up** The current display view is scrolled up so that newer text can be viewed. END will be flashed when trying to scroll ahead of the text entry position. # **HOME** - Go to the beginning of the text window This will display the oldest text in the buffer. #### END - Go to end of text window This will return the display the active entry point for new text. #### **LCD Backlight and Contrast Adjustment** Both the brightness and contrast of the LCD can be adjusted. Refer to Config Menu #5 on page 31. ## **Keyboard Commands** K46 operation is controlled by either ESC or Control commands. ESC commands are generally used to open configuration menus while control commands result in an immediate action. #### **ESC Commands** The user first presses the ESC key, releases it, and then presses the desired command. ESC will be displayed on the status line to let the user know that the K46 is waiting for a command entry. Most of these commands bring up submenus to control various K46 functions. ## ESC B - Revert to Stored Defaults from EEPROM This command gives the user the ability to return to the last saved default settings. This is useful when it's necessary to return to a known working state after experimentation with a new setting. #### **ESC C - Configuration Mode** System configuration is divided into five menus, each with eight setting options. The user navigates through the menus using the left/right and up/down arrows. Moving extreme right or left will move to the next or previous menu, wrapping from first to last and last to first. An underline cursor indicates the selected item. The ENTER key opens that item up for editing and a submenu will show the current setting. The setting can then be changed with the right/left arrows or by entering a new value on the keyboard. Each menu
item leads off with a number: 1:Tx WPM for example. Entering that number (1 in this case) will directly open that entry. When finished with an entry, either press the enter key to accept a new value or ESC to abort which leaves the value unchanged. Master copies of the K46 settings are stored in EEPROM, one copy for each user. The settings include everything that is in the Configuration Menus as well as messages, cuts, and character mappings. When the K46 is turned on, settings are read into the K46 from EEPROM and activated. When settings are changed, they take effect right away but are not stored in EEPROM. This allows the user to restore working settings if they accidentally mess things up. If the user is happy with their changes they can then save them into EEPROM. ESC B restore and ESC S save are commands related to stored settings. When the K46 is used without a keyboard, the rotary encoder is used to access configuration by first pressing and holding the encoder button down until the configuration menu appears. Release as soon as you see the menu since holding it longer will power down the K46. #### Please note that: 1) Quick encoder press displays the message menu which can be cancelled by one CCW click - 2) A three second press brings up the configuration menu. - 3) A six second press will turn K46 power off. When off, a quick press will turn power on. Once the configuration menu is up, the user can scroll through the various entries by turning the encoder. Press the encoder quickly to open an entry for editing and then turn the encoder will modify an entry. When finished, press the encoder to save the change and return to the main menu. To leave the main menu and return to operational mode, press and hold the encoder button until the menu clears. Configuration does not interrupt CWR input; incoming CWR text will continue to be added to the Rx display window in the background. A full list and description of all the configuration menus is presented in Appendix A starting on Page 26. # ESC D - Dump Display Buffer(s) The contents of either the Rx or Tx buffer can be sent over serial USB to a host PC for display or archiving. If this is the first time you are connecting the K46 to a PC's USB port, please refer to appendix D on page 39. When ESC D is pressed, the following menu is shown: Display Dump Setup - 1) Dump Rx Buffer - 2) Dump Tx Buffer - 3) Start CWR Stream Figure 2 – Display Dump Setup Menu - 1) Dump Rx Buffer: The contents of the CWR Rx buffer is sent to the host. - 2) Dump Tx Buffer: The contents of the transmit buffer is sent to the host. - 3) Start CWR Stream: A continuous stream of CWR Rx data is sent to the host. A selection is made by pressing the desired function number. In other words press 1 to Dump Rx, 2 to Dump Tx and 3 to Start/Stop a CWR stream. To leave the menu without any action, press the ESC key. If the K46 is not connected to a host over USB serial, an error message will display and the menu will be cancelled. For selections 1 and 2, a message will be displayed while the transfer is happening and the menu will clear after the entire buffer content is transferred. Selection 3 is used to start and stop a continuous transfer of Morse text as it is decoded by the CWR. When 3 is pressed, the stream will start and the menu item will change to "Stop CWR Stream". After a brief pause the menu will clear and text will be sent as received. While stream is active a $\underline{\mathbf{D}}$ is shown in the status bar. To stop the stream, enter ESC D again and press 3. Note it is not possible to dump either the Rx or Tx buffer while the CWR stream is activated. There are several terminal programs that run on a PC and receive data over a USB serial connection. The text is displayed and can be saved to a file. A very popular one is TeraTerm and is freeware. The K46 serial data settings are fixed at 19200 baud, 8 bit, with no parity. # **ESC G - Toggle Export GUI Enable** The K46's display and keyboard input can be exported to a PC over the K46's host USB port. A PC application supplied by K1EL, K46display.exe, communicates with the K46 for this purpose. If this is the first time you are connecting the K46 to a PC's USB port, please refer to appendix D on page 39. K46display.exe is a free download which can be found on the K1EL website. Go to the K46 webpage and there is a link to the K46display app. Installation and usage is described there. When the K46 Display app is linked it is not possible to run the K46 in WinKeyer mode, upgrade firmware, or use the Dump Utility since the USB interface cannot be shared between these functions. ESC-G is a toggle command which means every time you issue it, the mode is enabled or disabled. The operation of K46 Display is not complicated however you must read through the usage instructions before running it. The display colors can be set to white on blue background or black on green background. To make it easier to read for levels of display zoom are supported. A **G** is displayed on the status bar while GUI export is activated. Figure 3 - K46 Display Application ## ESC H - ESC Help Menu This brings up a brief list of the ESC commands hints. Use the up/down arrows to scroll through all of the selections in the menu. If a command letter is entered, that command will be run. For example, enter the letter C to directly activate the Configuration menu. ESC to cancels the help menu. HOME and END move to the first and last lines while the left and right arrows toggle between the Control and ESC help menus. ``` <<< ESC Commands >>> C Set Configuration D Setup Display Dump H ESC Command Help ``` Figure 4 – Escape Command Help Menu (only ther first four lines aer shown) #### ESC K - Key mapping Menu The mapping of K46 keyboard keys to Morse characters can be customized. This feature is primarily used to support international character sets. Figure 5 – Key Mapping Menu As shown in figure 5, there are three data entry points: - 1) The character you wish to edit. - 2) The character you wish to map it to. - 3) Optional 2nd letter of a prosign. When the menu is first shown, the cursor will be at position 1. Enter the key to map here. When a key is entered, the Morse letter it currently maps to is shown at position 2. To change the mapping, use the right arrow key to move the cursor to position 2 and enter a new letter. Position 3 is optional, sometimes the target Morse letter can only be represented as a combination of two existing letters, this is commonly known as a prosign. To create a prosign, simply enter the letter pair at positions 2 and 3. Otherwise just enter a space in position 3. To continue with a new mapping move the cursor back to position 1 and enter a new key to map. When finished, ENTER will save the mapping(s) to EEPROM or ESC will cancel the mapping and revert to the pre-existing mappings. Following the above example, after saving the mapping, the prosign KN (dah-di-dah-dah-dit) will be sent when the (key is pressed. The K46 follows International Morse convention and defines punctuation as shown in the following prosign table. These are predefined by default in the key mapping table. Any of these can be changed simply by remapping them as described above. ``` is mapped to BT is mapped to < is mapped to AR > is mapped to SK is mapped to KR @ is mapped to AC $ is mapped to is mapped to CM VU) is mapped to is mapped to KN KK is mapped to AF is mapped to DU is mapped to is mapped to WG UK is mapped to OS is mapped to AR is mapped to HH is mapped to MM is mapped to is mapped to MN ``` Table 1 – Punctuation to Prosigns Defaults Several keys are fixed to Q codes, it is not possible to re map these keys: ``` Shift-[is mapped to QRZ { is mapped to QRV Shift-] is mapped to QSL } is mapped to QSY ``` ## ESC L - Clear both display window buffers The contents of the receive buffer and transmit buffers will be cleared when this command is entered. # ESC M - Message Launcher Menu Since the F1 to F12 message keys are not very descriptive, it's easy to forget which key a message is linked to. Message Launcher provides immediate hints for all the message keys in one easy to access menu. When a message is loaded, an eight-letter hint (tag), is entered for each message. Message Launcher formats the message keys and tags together to remind you where the messages are and then allows you to quickly launch a message of choice by entering a single numeric keystroke. ``` 1:CQX1 2:RST 3:NAME 4:QTH 5:73 6:PSE RPT 7:RIG 8:ANT ``` Figure 6 – Message Launcher Menu Example (only 8 of 12 messages are shown) If a keyboard is not connected, Message Launcher can be opened with a quick press of the encoder button. A cursor is displayed which can be moved by turning the encoder. Once the desired message is selected, press the encoder to start it. The K46 will remember the last selected message so that the next time the menu is brought up, the cursor will be placed there. If the Message Launcher is accessed by mistake, turn the encoder CCW one click to cancel the launcher. Using figure 6 as an example, simply press 3 to start the NAME message. After the message is selected, the message launcher will clear automatically. To cancel the menu, just press ESC. A quick press on the encoder will also bring up the message menu, turn the encoder to select a message and then press to play it. The K46 always remembers the last message selected. # **ESC O - Start Low Power Standby** When the K46 is not going to be used for a while, it can be placed into low power standby mode. The K46 will not be completely powered off so it can be brought back to normal by turning the encoder two clicks. Power is reduced about 60% when in low power standby, backlight is turned off, and "Standby" is displayed. ## **ESC P - Practice Mode** There is an extensive set of Morse practice tools built into the K46. Random Letter Groups, Echo Sending, and QSO simulation are included. A separate section devoted to
Practice Modes starts on Page 15. #### ESC R - RTTY Setup Menu The K46 can be configured to operate in RTTY transmit mode. The format is fixed to Baudot FSK with many options. A separate section on RTTY configuration and operation starts on Page 18. #### ESC S - Save New Defaults The currently active user settings are stored in EEPROM as defaults. The old defaults are overwritten. # ESC T - Serial Number Setup Menu (Cuts Editor) The K46 provides a means to send an incrementing serial number either from the keyboard or as part of a message. The ESC S menu provides a means to control the way a serial number is sent. Cuts are letters that will be substituted when serial numbers are sent, this reduces transmit time. As illustrated in Fig 7, the most common mappings are T for 0 and N for 9 since they take the longest to send. It's the user's choice as to how far to go with this, usually only one or two numbers are set up as cuts. It's optional and perfectly fine to not use cuts at all. Also included in this menu is leading zero suppression control. This can be turned on and off by hitting the space bar. One or no leading zeroes will be sent as specified by the LZ entry. The serial number can be preset to a specific starting value in Configuration Menu #5 (see page 31) ``` = S/N Cuts & LZero = 0:T 1:1 2:2 3:3 4:4 5:5 6:6 7:7 8:8 9:N LZ = OFF ``` Figure 7 – Serial Number Format Menu (LZ is changed by space bar press) # ESC U - Firmware Upgrade Menu The K46 PIC processor, the WK3 IC, and the CWR's PSoC can be upgraded in the field. Appendix C starting on page 36 is devoted to the firmware upgrade procedures. Please don't experiment with these commands; you could accidentally put the K46 into an inoperative state the K46 if you don't follow the update procedures correctly. Before connecting the K46 to a PC's USB port, please refer to appendix D on page 39. # **ESC W - Start WinKeyer Mode** The K46 has the latest WinKeyer3 IC on-board, and this can be accessed and controlled by a host application, like N1MM or FLdigi, running on a PC. When ESC-W is entered, the K46 operating system will be temporarily disabled, and the host USB port will be directly connected to the WK3 IC. The K46 will then operate exactly like a WKUSB or WKmini would in host mode. # Before connecting the K46 to a PC's USB port, please refer to appendix D on 39. In WinKeyer mode, the rotary encoder will function in a similar way to a normal WKUSB speed pot without physical end stops like there are on a potentiometer. The host application's speed pot min and max settings determine what the end stops will be. Just like WKUSB, the K46 will appear as a serial com port to a host application. Here are the steps to follow to run K46 from a host application. - 1) K46 must first be plugged into one of the PC's USB ports. - 2) Enter ESC-W on the K46 to start WinKeyer Mode! - 3) Determine the USB com port using Device Manager or WKscan on the PC. - 4) The USB comport address is then entered into the application's WinKeyer setup dialog box. - 5) When WinKeyer mode is started on the K46, a *Port Closed* status is displayed. This status will change to *Port Opened* when a host application is started and it connected to the K46. - 6) When the application is shut down it disconnects from the K46 and the status message changes back again to *Port Closed*. Some things to know about K46 WinKeyer mode - 1) Unlike WKUSB, the K46 does not have any message pushbuttons. - 2) There is no WKUSB standalone mode, please don't modify settings with WK3tools. - 3) Upon entering WinKeyer mode, the K46's keyboard (if attached) is disabled and not used. - 4) Like WKmini, the K46 provides two keying ports without PTT or one port with PTT. - 5) The K46 encoder emulates a WKUSB speed pot as close as possible. It generates one WPM - change per click. If you turn the pot extremely fast, the K46 may miss a step. - 6) The K46 must be in WinKeyer mode before a USB comport will show up on the PC. - 7) A Host Not Found Error is displayed if WinKeyer mode is started without an active PC host. - 8) If WK CWR is enabled (Config Menu #5) CWR signal strength, Rx WPM speed, and a side scrolling CWR text display line is shown. To exit WinKeyer mode, close the host application and then press the encoder pushbutton. This will return control of the WK3-IC to the K46 controller and the K46 operating system will restart #### WKCWR Mode For the K46 we have added a single line CWR text readout of Morse that's received while WinKeyer mode is active. The RX WPM and signal strength indicators are also shown. WKCWR mode is enabled by item 2 in Configuration menu #5. #### **Control Commands** To issue a control command, the user holds the CTL key down while pressing the specified key. Even though the commands are shown in caps, the shift key does not need to be pressed. CTL A (^A) - Reset CWR WPM - opposite of CTL M; CWR Rx WPM is set to Tx WPM #### CTL B (^B) - Send 73 String (Bye) 73 73 DE MYCALL SK will be inserted into the transmit stream. MYCALL is the contents of slot F11 # CTL C (^C) - Start Fast Callsign Capture A callsign can be captured and saved while it is being sent on the paddles or by keyboard. A detailed description of this function can be found on page 12 (*Fast Callsign Capture Feature*). # CTL D - (^D) Decrement Key Weighting # CTL I - (^I) Increment Key Weighting **^D** will decrease weighting by one percent and the **^I** will increase weighting by one percent. There are hard stops at 25% min and 75% max. Value changes are flashed on the status line, **W:55** for example, and automatically updated in the User's configuration. # CTL E (^E) - Send Error Dits Eight dits will be sent to signify an operator error. This a buffered command causing a # character to be placed in the transmit buffer. Instead of ^E, the user can enter the # directly. ## CTL H (^H) - Show Control Command Help Menu This brings up a brief list of the Control commands. Each description is intended to be just enough to jog a user's memory. Use the up/down arrows to view all the selections the menu. If the command letter is entered, it will be run directly. Otherwise press ESC to cancel the menu. HOME and END move to the first and last lines while left and right arrows toggle back and forth between the Control and ESC help menus. <<< CTL Commands >>> ^C Catch Callsign ^D Decrease Weight ^E Send 8 error dits Figure 8 – Control Command Help Menu (only first three lines shown) ## CTL L (^L) - Clear currently displayed text window, either Rx or Tx Only the window in view is cleared. If the transmit window is in view and actively sending text, transmission will stop immediately. Use **^L** to clear both windows at once. # CTL M (^M) - Match Tx speed to CWR Rx speed A user usually wants to respond to someone they are copying via the CWR at the same WPM speed. When **^M** is entered, the transmit speed is immediately changed to the current CWR Rx speed. # CTL N (^N) - Play Serial Number Use this command to insert the serial number into the text stream. If there is text in the buffer ahead of the command, that text will be sent before the serial number. The serial number is automatically incremented after sending it. For information about inserting a serial number into a message see **\N** in the buffered command section on page 14. The right and left arrows directly adjust the serial number up or down. #### CTL Q (^Q) - Send CQ String CQ CQ DE MYCALL MYCALL will be inserted into the transmit stream. MYCALL is the contents of slot F11 # CTL R (^R) - Send RST Shortcut The RST string 5NN will be inserted into the transmit stream when ^R is pressed # CTL T (^T) - Tune **^T** places the K46 in tune mode which forces a constant key down condition. Sidetone (if enabled) is turned on and the configured output is turned on as well. The user has the option of selecting 50% duty cycle by way of an entry in Configuration Menu #2. Tune remains on until the user presses space, **^T**, the paddle is pressed, or the 10 second tune watchdog timer expires. If in Key1 & PTT mode, both the KEY and PTT outputs are turned on. Only one output is turned on in Key1 or Key2 modes. The CWR is muted while Tune is activated. W will be displayed on the status line to indicate tune is in effect. # CTL U (^U) - Change User As mentioned previously, four user setups are supported. The user steps 1> 2> 3> 4> 1 every time **^U** is pressed. When the user is changed a brief message is flashed on the status line while the current configuration is changed. Each user has its own set of settings and messages. One application is to set one user for CW operation and a different user for RTTY, this facilitates fast mode changes # CTL U (^V) - Resync K46 Display When the K46 Display app is started, this command forces the app to update its display to the K46. ## CTL X (^X) - Insert Exchange Message The message WRKCALL DE MYCALL will be inserted into the transmitted stream. Like **^B**, **^Q** and **^R**; **^X** is treated like a buffered command and will be sent after any text already in the transmit queue is sent. MYCALL resides in slot F11 and WRKCALL resides in slot F12. WRKCALL can be entered using FAST Callsign Capture as described on page 12. The ENTER key can be used as an alternative to **^X**. # CTL Y (^Y) - Toggle Backlight On/Off The display's backlight will be toggled on and off every time **^Y** is pressed. ## CTL Z (^Z) - Reset CWR Settings to Defaults A fast way to reset the CWR gain, threshold, spacing, and filter settings to baseline. # **Other Keyboard Commands** # INS - Pause Transmit (Insert Key) This key is pressed when the user wants to temporarily stop transmitting. Whether the K46 is sending a message or using the type-ahead buffer, transmit is immediately stopped and held until the user presses insert again. A flashing **H** will be displayed on the status line while transmit is held. If the user presses **DEL** (delete) or enters text on the paddle,
pause will be cancelled and any text in hold will be cancelled. # **DEL - Cancel Transmit Buffer (Delete Key)** When the Delete key is pressed, transmit is immediately stopped and the remaining buffered data is deleted. For example, if the user accidentally starts a message but wants to cancel it, the Delete key should be pressed. The user can also cancel an active buffer by quickly pressing and releasing the paddle. # Right & Left Arrow Keys – Increment or Decrement the Serial Number Since the serial number is automatically incremented when it is sent, the user needs a way to control incrementing and decrementing in a contest situation. Often a serial number is not confirmed and needs to be repeated so the user would need to decrement the serial number before resending it. In a similar case, the user may enter a serial number by paddle or keyboard bypassing the automatic serial number generator. For these reasons, an easy, manual way to modify the serial number is necessary. # Up and Down Arrow Keys - Change Transmit Speed Shortcut The **UP** arrow increases the speed by one WPM and the **DOWN** arrow decreases speed by one WPM. #### CTL-Left & CTL-Right - CWR Audio Gain Adjustment While copying a station, it is essential to be able to adjust the CWR gain to bring up a weak station or attenuate a strong station. Hold the Control key down and press the left and right arrows to cycle through ten gain levels. As the gain is being modified, new values will be flashed on the status line as **CG:n** where n is a value between 0 and 9. Generally, the best gain setting provides a wide swing in detected amplitude without over-driving. A plus sign (+) in the signal amplitude bar graph indicates overdrive and should be avoided. For best results, adjust the gain so that the loudest signal barely lights the right most LCD bar. The default gain setting is 4. # ALT-Left & ALT-Right - CWR Noise Filter Adjustment Hold the **ALT** key down, pressing the Left and Right arrows will cycle through ten filter levels. As the filter is being modified, new values will be flashed on the status line as **CF:n** where n is a value between 0 and 9. The noise filter dictates how the CWR will respond to short impulses of a specified width. Larger filter values decrease the response time of the filter and can reduce the maximum received WPM speed. Default noise filter is 4. ## CTL Up & CTL Down - CWR Threshold Adjustment The level of background noise can vary from day to day and even hour to hour. The CWR's noise threshold can be easily adjusted to compensate. If the band is very noisy, the threshold should be raised to prevent false letter detection. (This reduces the random display of E's, T's, and I's). When the band is very quiet you can lower the threshold to allow better weak signal detection. This isn't without limitations. Raising the threshold too high can cause signals near the noise floor to be ignored. However, a higher threshold will allow strong signals to be decoded well in noisy conditions. New threshold values will be flashed on the status line as **CT:n** where n is a value between 0 and 9. ## ALT Up & ALT Down - CWR Spacing Adjustment This helps compensate for CW operators that use incorrect spacing between letters which can cause CWR decoding errors. There are ten settings which are adjusted by holding the **ALT** key down while pressing the up and down arrows. Zero indicates normal spacing. Selecting a value less than zero will tighten spacing. This helps with: U R R S T I S. Spacing adjustment greater than zero will spread letters out. This helps with: URRSTIS5NN. As the value is changed, it is flashed on the status line as CS+n or CS:-n where n is the adjustment setting. This feature has its limits, you will encounter operators who choose to use very large, very small, or inconsistent letter spacing which the K46 will not be able to correct. # SHIFT PGUP & SHIFT PGDN - Sidetone Frequency Adjust This is a shortcut for changing the sidetone frequency. It affects either the internal sidetone speaker or the sinewave sidetone module if that is enabled. As the frequency is changed, it is flashed on the status line as a four digit value in Hertz (cycles per second). ## CTL PGUP & CTL PGDN - Sidetone Volume Adjust This is a shortcut for changing the sidetone volume. It affects either the internal sidetone speaker or the sinewave sidetone module if that is enabled. As the value is changed, it is flashed on the status line as a two digit number V:nn where nn is the volume level (0-4) for internal sidetone or (00-25) for the sinewave sidetone module. #### **Encoder Press - Power On and Off** When the K46 is off, a quick press on the encoder will turn the K46 on. The LCD initialization screen is shown first followed by the startup display for the main PIC processor followed by WinKeyer init with PSoC init last. After that the main status display is shown. To power off you have to be at the main status screen, Press and hold the encoder and the configuration display will be shown, keep holding the encoder and after two seconds the K46 will be powered off. # K46 Programmable Messages There are 12 programmable message slots per user, each slot can hold up to 140 characters. For longer messages, multiple messages can be chained together. Messages are assigned to the function keys **F1** through **F12**. Pressing one of these keys will play the message. Messages can be stacked, in other words, if you press **F2** three times in a row, the message in slot **F2** will be played three times. You can even stack different messages on top of each other, for example: **F2 F2 F3 F1**. The K46 allows up to 8 stacked messages, if more than that are added, the last one entered is retained. ## **Editing messages** Hold the shift key down while pressing a Function key (**F1-F12**) and that message and tag will be read in for editing. The user edits the message in the familiar way using the Up/Down/Left/Right, Home, End, backspace, and delete keys. In addition, Shift-Left and Shift-Right move the cursor by word, Shift-Home moves to the beginning of a line, and Shift-End move to the end of a line. To quickly clear either an entire message or tag use **^L** (CTL-L). EDIT F1: CQX3 CQ CQ CQ DE WA1XYZ WA1XYZ WA1XYZ K_ Figure 9 – Message Editor Example There are seven 21 letter lines allocated for each message for a total of 140 characters. A full message can fit one the display so up and down scrolling is not needed. Word wrap is not enabled in the message editor, this provides the most efficient use of limited display real estate. # Message Tag The top line of the message edit window shows the current message tag. A tag is an eight-character identifier that is shown in the Message Launch Menu (ESC-M). For F1 to F10, the initial tag is TAGn where n is the message number. The initial tags for F11 and F12 are MYCALL and WRKCALL. Any of these tags can be changed if desired. The most common use of F11 and F12 are with the automatic exchange generator but they can be used just like any other slot. (see ^X (CTL X) command on pg. 9) When the cursor is moved up to the top line, the cursor will snap to the tag for editing. Use **^L** (CTL-L) to delete the current tag or move the cursor to the end of the tag and backspace left to delete letter by letter. Use the down arrow to leave the tag and get back to the message. When message editing is completed, use **ENTER** to save the new message or **ESC** to cancel the edits and revert to the original message and tag. #### **Fast Callsign Capture Feature** The K46 can store a callsign as it is entered on the paddles or keyboard. Press either **^C** (or the star key in NumPad mode) and **CLL** will be displayed on the status line. Enter the callsign on the paddles and after a pause of one wordspace, it will be stored in message slot F12. When using a keyboard, enter a space after the callsign to store it. Note that the callsign is saved as it is being transmitted. So when calling someone, first press **^C**, enter the callsign, and then continue on. Their callsign will be held in **F12**. If the user's callsign is loaded into message slot **F11**, a full exchange will be sent when either **^X** or **ENTER** is pressed. For example, if **F11** is loaded with K1EL and WA1ABC had been captured into **F12**, **^X** or **ENTER** will send the string WA1ABC DE K1EL. Because **F11** and **F12** are normal message slots, they can be sent individually by pressing **F11** or **F12**. The default tag is **MYCALL** for **F11** and **WRKCALL** for **F12** but these can be modified in the message editor. To cancel a callsign capture, either press **^C** again or **ESC**. #### **Buffered message commands** A simple set of commands can be used to compose complex CW messages. A command is a letter preceded by the \ (backward slash). Commands are inserted into a message to perform various functions. For example, a speed change is implemented like this: **\\$05**SLOW TEXT **\\$30**FAST TEXT**\R** will send SLOW TEXT at 5 WPM and FAST TEXT at 30 WPM at the end of the message the speed will be reset to the original speed. Or a key down message as used for testing: TEST \K10 DE K1EL will send TEST followed by a 10 second key down followed by DE K1EL When editing a message, a list of buffered commands can be displayed by entering \?. Scroll through the list using the up and down arrows. When a command is found, enter the command letter and it will be added to the message. This is a fast way to find a buffered command hint and its formatting. To cancel the help menu, press **ESC** and the command delimiter \text{\text{is}} removed. Some commands, like \text{\text{\text{W}}} nn require a two digit parameter. Don't forget to enter the parameters or the command to be ignored. < Buffered Commands > \D Decrement S/N \Hn Set HSCW Speed \I Increment S/N Figure 10 - Buffered Command List Menu, use Up/Down to view them all #### **List of Buffered
Commands** # Jump to message (Buffered) Vn where n is a number 1-9 or letter A,B,C. F1-F9 would be \1 to \9, F10 is \A, F11 is \B, and F12 is \C. Here are two simple examples: Load Slot F1 with: CQ CQ \J3 Load Slot F2 with: QRZ QRZ \J3 Load Slot F3 with: DE K1EL K Message F1 will be sent as: CQ CQ DE K1EL K Message F2 will be sent as: QRZ QRZ DE K1EL K Jump can be used to make a message loop: Load Slot F10 with: CQ CQ CQ DE K1EL K1EL K1EL \JA After sending **CQ CQ CQ DE K1EL K1EL K1EL** we loop back to the beginning and send it again. This will repeat forever until either paddle or **DEL** key is pressed. When composing a message like this, be sure to put a space or delay at the end, otherwise the first letter will be sent after the last with no word space. # Call a message (Buffered) **\ Cn** where n is a number 1-9 or letter A,B,C. F1-F9 would be \1 to \9, F10 is \A, F11 is \B, and F12 is \C. The call command will jump to the specified message, send that message, and after the message completes the stream will return to where it was called from. It is more flexible than a jump to message. An example of this command is: Load slot F1 with: \C \C DE \B \B BTU OM KN Load Slot F11 with: **K1EL** Load slot F12 with: **WA1ABC** Message F1 will play as: WA1ABC WA1ABC DE K1EL K1EL BTU OM KN This illustrates a powerful feature; you can build up a message that contains other messages. Messages can be reused by substituting different callsigns in F11 and F12. By using F11 and F12 this way, the built in exchange feature (**^X** or **ENTER**) can be used as well, see "CTL-X - Insert Exchange Message" on page 10. #### **Decrement Serial Number (Buffered)** **\D** - The five-digit serial number is decremented. If equal to 00000 it is not decremented. # **Increment Serial Number (Buffered)** **\!!** - The five-digit serial number is incremented. If equal to 99999 it is not incremented. #### Reset Speed (Buffered) \R - This will cancel a \S, \H, or \Q command and return to the current default WPM speed. ## Set an HSCW Speed (Buffered) **\H<n> n=1 to 6** where n is a number representing the lpm rate divided by 1000. For example, **\H2** selects 2000 lpm and **\H4** selects 4000 lpm. Commonly used rates are 1000, 2000, 4000 and 6000 lpm in the USA and 1000, 3000, 4000 lpm in Europe. HSCW is mostly used for working stations via Meteor Scatter propagation. Short bursts of characters are sent repetitively at high speeds for a predetermined period. The receiving station listens and records the sporadically received bursts and plays them back at a slow speed to decipher the Morse message. **NOTE!!**: Remember to put a reset speed command **/R** at the end of a message to restore normal CW operation when the message is completed. **HSCW Operation Hints:** You must enable PTT for this function to work properly. Common practice is to key the transmitter with PTT and feed keyed audio tones into the microphone input. You can use the K46 sidetone output directly as a tone source as this is a keyed 2000 Hz tone in HSCW mode. Alternatively, you can use the K46 key output to key an external tone generator. (note need to look at the outputs, PTT is dropping between chars) See http://www.nitehawk.com/rasmit/ for more information about HSCW /H1 K1EL BCON \R (K1EL BCON sent at 1000 lpm followed by WPM reset) Although it's possible to send HSCW directly from the keyboard by entering the /Hn command before a string, the most efficient use of HSCW is to format a specific HSCW message. ## Key down for nn seconds (Buffered) **\K<nn>** - The transmitter will be held in key down state until either the timer expires or **DEL** is entered. Two digits must be entered, as in 06 for 6 seconds. Maximum key down time is 99 seconds Example: ON \K05 OFF a 5 second key down will be inserted between ON and OFF. #### Merge Two Letters into a Prosign (Buffered) \M <C1><C2> - You can build "on the fly" prosigns with this command. Just enter \M followed by two letters or numbers and they will be merged: \MAR is sent as AR. If this command is entered on the keyboard, nothing will be sent until both letters have been entered. # Send Serial Number (Buffered) **\N** - The current five-digit serial number is sent in Morse. If LZ is on (Serial number menu ESC S) all leading zeroes are suppressed so 00407 would be sent as **407**. The serial number menu is also be used to map a number to a cut substitution. If T is mapped to zero, **477** would be sent. # **Change Output Port (Buffered)** **\O<n>** – (1 or 2) Select the output port to transmit on. This command will only work when PTT is not enabled. In other words, select either Key1 or Key 2 in Configuration Menu #2:OutPort. #### Pause Output (Buffered) <string> \P<string> K46 message transmission will be paused to allow the user to insert something and then continue. The response can be by keyboard or paddle. If by keyboard, the user must press **ENTER** to signal the end of the string. If by paddle the K46 will continue automatically after paddle entry stops for one wordspace time. The **DEL** key can be pressed to cancel the pause. Here is an example usage of this command: # UR RST IS \P= NAME HR IS STEVE After playing **UR RST IS**, the K46 will pause to allow an RST report to be sent manually and then continue with the rest of the message. If using the keyboard, be sure to press **ENTER** to continue or **DEL** to cancel because the K46 will hang until that happens. Be sure not to put a space after the **^P** command as this can cause the second half of the message to be skipped in some cases. #### Set a QRSS Speed (Buffered) \Q<n> - Where n is a single digit number 1-4 representing the QRSS rate. 1=QRSS3: 3 second dits 2=QRSS6: 6second dits 3=QRSS30: 30 second dits 4=QRSS60: 60 second dits For example, \Q1 selects QRSS3 or 3 second dits and \Q4 selects 60 second dits. **NOTE!!**: Remember to put a Reset speed **\R** command at the end of a message that contains a QRSS command to restore normal CW operation when the message is completed. /S20/Q1 KEL /RK1EL BCON (Sends KEL at .4 wpm followed by K1EL BCON at 20 WPM) Although it's possible to send QRSS directly from the keyboard by entering the **/Qn** command before a string, the most efficient use of QRSS is to format a specific QRSS message. # **Change Transmit Speed in WPM (Buffered)** \S<nn> - Change Speed to nn WPM (nn = 05 to 99) two digits must be entered as in 08 for 8 WPM Here is a message with multiple speed changes: \S25 CQ CQ DE \S15K1EL K1EL will send CQ CQ DE at 25 WPM and K1EL K1EL at 15 WPM # Insert a delay (Buffered) \W<nn> - Wait for nn Seconds (nn = 01 to 99) two digits must be entered as in 05 for 5 seconds Here is a simple looping message beacon using key down and wait:: VVV \K05 DE K1EL \W60 \J1 Three V's, a 5 second key down, **DE K1EL**, with a wait of 60 seconds will repeat until cancelled with **DEL** or paddle press. Note the placement of spaces around the key down to separate it from the adjacent text. Delays longer than 99 seconds can be specified by using the **WM<nn>** variation which will pause for nn minutes. The maximum wait time allowed is 20 minutes. # Easy Beacon with exact timing (Buffered) **\Z<nn><str>** - str will be sent at the beacon rate designated by nn in seconds. The time between beacons is set by the value nn and is independent of the time it takes to send str. A **\J** command is not needed at the end of the message. Two digits must be entered, as in 06 for 6 seconds. **DEL** or paddle press cancels. A disadvantage of formatting a repeating beacon with /W and /J commands is that the time it takes to send the string is added to the wait time. It takes a lot of trial and error to get an exact beacon interval. Easy beacon doesn't include the string time, it will repeat at whatever time you enter in the command. The exception is that if the If the string time is longer than the beacon time, there will be no pause. Beacon delays longer than 99 seconds can be set by using the ZM<nn> variation of this command: **ZM<nn>** Sets the beacon time to nn minutes. The maximum time allowed is 20 minutes. #### Message Key Display Message function keys are displayed on the LCD display in buffered command format. In other words, pressing **F1** will insert **\1** into the transmit buffer. The expanded message can be viewed in the Fast Tx View window by pressing the Windows key. More Message Examples: Send a string with an incrementing value, assuming serial number has been preset to 100): Load F5 with: COUNT IS \N, \W05\J5 A QRSS beacon message: Load F3 with: \Q2\K05 EL FN43 \J3 Beacon using two key outputs, 5 second pause between each radio transmit: Load F1 with \O1 Radio 1 \W05 \02 Radio 2 \W05 \J1 Morse Practice Module The K46 has three practice modes that are very effective in helping a user improve their Morse skills. #### **Practice Menu** Press **ESC** followed by **P** to open the practice menu which is the starting point for all three practice modes. There are six options that configure practice operation. Navigate with the up and down arrows and change entries with the left and right arrows. ``` ===Practice Setup=== 1→Rcv Mode Level 1 ←4 2→15 WPM TxOut On←5 3→Show CW Tone On ←6 ``` Figure 11 – Practice Setup Menu - Practice mode selection There are three modes: Rcv Mode repeatedly sends random 5 letter groups Echo Mode sends groups of letters which the user echoes back to the K46 by paddle or keyboard QSO Mode which is a very basic, on air, QSO exchange simulator with a contest option - 2) Set initial Practice operating speed in WPM. After starting a session, speed can be adjusted either by the rotary control or up and down arrows. - 3) Show/Hide CW Text sent during a practice session can be displayed if desired. When first learning Morse, it can be helpful to see letters as they are transmitted. As the user improves, it is more helpful to hide them. Even if the output display is turned off the user can override this by
pressing the TAB key to view the transmit window. - 4) Level There are five levels of difficulty in Rcv and Echo mode starting with the easiest letters such as E T A N and proceeding up to the full range of letters, numbers, and letters. The levels are shown in Table 2. Keyboard reply in Echo mode will be < for AR, > for SK, = for BT, and & for AS. When QSO practice is selected, this option changes to Contest Mode On/Off. - 5) TX Out (On/Off) Transmit output can be disabled during a practice session. This is a good idea to prevent broadcasting if the K46 is connected to a transmitter. Alternatively, the user may want to enable transmit for the purpose of keying an external code practice oscillator (see item 6). - 6) Tone On/Off This controls the K46's internal sidetone speaker which should be turned off when using an external code practice oscillator. #### **Rx and Echo Practice Levels** ``` Level 1: E T A N I M Level 2: W S G D U K O R (including level 1) Level 3: C Q P J F B V Y H X Z L (including level 1 & 2) Level 4: 1 2 3 4 5 6 7 8 9 0 (including level 1 & 2 & 3) Level 5: ? / , . AR SK BT AS (including level 1 & 2 & 3 & 4) ``` Table 2 - Practice Levels The K46 will remember the last entered practice settings and will reload them when re-starting. After everything is set up, the next step is to press **ENTER** and the practice session will start. While underway, the user can change the WPM speed with the Up/Down arrow keys or by turning the encoder. The **INSERT** key will pause practice and the **ESC** key (or PB press) will end practice. In modes where the user is entering text by paddle, the reserved code di-dah-di-di-dit (**AS**) is pause. To review a session, press **INSERT** to pause and then use the **PGDN** and **PGUP** keys to scroll the lines of text. Press **INSERT** again and the display will automatically go back to where the session left off and practice will resume. #### **Receive Practice Mode** | RX_PRACTICE | | | | | |-------------|----------------|--|--|--| | QSMEF | ZPOLK | | | | | UM1MD | LZ9BB | | | | | Q4CXC | WWQDF | | | | | | QSMEF
UM1MD | | | | Figure 12 – Receive Practice Display Random five letter groups are sent continuously until the user either pauses or ends the session. The content of the groups is governed by the level set in the Practice Setup Menu. Test progress by hiding Tx and then copying some number of lines. When done, press **INSERT**, **TAB**, and then **PGDN** to go back and review what was sent and compare to what was copied. Resume by simply pressing **INSERT**. #### **Echo Practice Mode** _ECHO_PRACTICE_23WPM A AS ASR ASRG ASRGG W WZ WZ4 WZ4 W WZ WZ4 WZ4Q WZ4QX Figure 13 – Echo Practice Display The K46 sends a list of letters from the selected level and the user must repeat them accurately either by keyboard or paddle. Each trial starts with a single letter and progresses to a group of five letters by adding one letter at a time. If the user successfully echoes all five strings, the K46 will send **AR** and then start with a new group. If the user fails, the K46 will send eight dits and repeat that group until the user gets them all correct. **INSERT**, **TAB**, **PGDN** and **PGUP** are very useful here just as they were for Rx practice. # **QSO Practice** _QSO_PRACTICE__15WPM CQ CQ DE K5RF K K5RF DE K1EL K K1EL DE K5 RF UR RST 5NN Figure 14 – QSO Practice Display A basic interactive QSO experience is presented to the user. The K46 starts off with a CQ which the user responds to. Exchanges will continue back and forth simulating an actual on air QSO. Callsigns, names, locations, etc. are fictitious and generated at random. The K46 is very unforgiving when it comes to letter and word spacing. If words or letters are run together, they will be ignored, and progress will be very slow. The user can choose to use the keyboard or paddles to respond. When using the keyboard, be sure to put a space after the **K**, **KN**, **SK**, or **BK** at the end of an exchange. This will help the K46 will detect the ending quickly. If this is not done, the K46 will still respond but only after a somewhat long timeout delay. *A full response to the initial CQ is expected* and must include the calling station's callsign followed by **DE** and your callsign. If you don't get this right the K46 will respond with a QRZ. For example, in response to CQ DE W1XYZ K, I would reply W1XYZ DE K1EL K<space> After the initial exchange, The K46 will respond to **BK** if you don't care to enter a full exchange on every go 'round. To end a QSO early respond with either **73** or **QRT** and that will speed things along; *TIME TO QRT* or *WILL SAY 73* works nicely. The session can be paused with the **INSERT** key or aborted by the **ESC** key. To review a session, press **INSERT** to pause and then use the **PGUP** and **PGDN** keys to scroll around the text. When the **INSERT** key is pressed a second time, the K46 will resume where the session left off. Depending on the timing of the pause, the K46 may ignore or repeat the last exchange. The AI used in QSO Practice is very basic, it responds to certain key words in an exchange and will generate a semi-interesting QSO. It is not able to understand detailed questions. Remember its purpose is to help build speed and skills and is not a substitute for a real online QSO. Between QSOs, the K46 mixes things up by randomly changing sending characteristics, speed, and even sidetone pitch. #### **Contest QSO Practice** Contest mode is selected in the QSO Practice Setup menu. It is essentially a simplified contest drill. The user will run a spot and respond to calling stations. The user's response is monitored by the K46 which is very unforgiving and expects the exact format be followed with exact spacing. Any errors will stop the drill. When Contest is started, the K46 will set up and then print **GO!** on the status line. The user starts things off by sending an initial call. Here's an example response to GO!: User sends: **TEST K1EL** which will be answered: W4RTY W4RTY 5NN NH the calling station answers: User responds: **5NN GA** User responds: a new station responds: TU K1EL K3NB User responds: K3NB 5NN NH the new station answers: **5NN MO** User responds: TU K1EL a new station responds: **WA5DDC** This continues until the user makes a mistake, the session is paused, or the session is cancelled. GO! QSO COUNT:27 TEST K1EL W4RTY W4RTY 5NN NH 5NN GA TU K1EL K3NB K3NB 5NN NH 5NN MO Figure 15 – QSO Contest Drill Display A QSO counter on the status line will increment on every complete exchange. If the user enters a call wrong, doesn't use proper spacing, or misses an entry the drill will stop. STOP will be then displayed on the status line. If the user hits **ENTER**, the QSO count will be reset and a new drill will start. Remember that this is a simple drill to practice accurate and well formed replies in a contest like situation. Many skills can be improved by using this mode of practice. If it starts to get boring, crank the speed up. When you reach 20 WPM, you are ready for real contest conditions. # **RTTY Transmit Operation** The K46 provides a very stable and accurate RTTY FSK output which is easier to manage than AFSK interfacing since it directly drives a transceiver's FSK input. When RTTY is first enabled, transmitter FSK output is assigned to the ring of the output jack while transmitter key output is assigned to the tip. There are many options available for tailoring RTTY transmit for a particular radio. These will be described below. Before going any further, please note that the K46 is not capable of receiving and decoding RTTY live off air, it is strictly a transmit only device. An alternate means of decoding RTTY Rx must be supplied by the user. Several transceivers, currently available, decode and display Rx RTTY but do not have an easy way to transmit RTTY, the K46 would be a good match for these. When the K46 is set to RTTY mode, it will transmit in Baudot only and Morse transmission is disabled. The transmit window acts the same way it does for Morse operation with the exception that Baudot strings must be delimited by square brackets. A starting [keys the transceiver and the user can then send Baudot on the keyboard. When finished, entering a] will unkey the transceiver ending transmission. it. For example: [RYRYRYRY CQ CQ DE K1EL K1EL K1EL PSE K] RTTY 1 IDLE [CQ CQ CQ DE K1EL K1EL K1EL PSE K][W8RTY W8RTY DE K1EL K1EL K] Figure 16 – RTTY Operational Display Using delimiters ensures that the transmitter is keyed and stable before starting FSK, an additional lead in delay time is usually required. Also, to prevent character chopping when transmit is turned off a tail delay is also usually required. PTT is asserted on the leading [and held till the trailing]. Any text keyed outside the brackets will be ignored. For typeahead press **INSERT** before entering the delimited string and when ready to send, press **INSERT** again. After sending has started, the forward slash character / will clear the transmit buffer and RTTY transmission will stop immediately. The right brace } will force a CRLF sequence: **CR CR LF LTRS**. (The **ENTER** key will also generate a **CR LF**). The left brace { will initiate an RYRYRY test pattern that runs for a line of 45 characters and the stops. All ASCII characters which map to Baudot characters are accepted and printed. The only non-printing Baudot characters acted on are the brackets [], slash \, left brace {, and right brace }. Commands relating to Morse are ignored. Those acted upon are shown below: 1) Tuning command ^T 2) Transmit Pause (INSERT) 3) Clear Tx buffer (DEL) 4) Set PTT Lead/Tail #### **CRLF** handling A carriage return/line feed ends a current line and starts a new one. This can be handled in one of two ways: - 1) A CRLF can be inserted manually using either the **ENTER** or **}** keys. - 2) Automatic CRLF, when enabled, will insert CR LF when the line length exceeds 45
characters. # **RYRYRY Test** The K46 will send a long RYRYRY string automatically in response to a { character. It will automatically send CRLF at the start of the test string. #### RTTY Setup The RTTY Setup Menu is initiated by ESC-R. Two menus are accessed using the Up and Down arrows. RTTY TRANSMIT SETUP1 RTTY On FSK=KEY USOS On Reverse Auto CRLF Off Figure 17 – RTTY Setup Menu 1 #### RTTY On/Off When RTTY is on, K46 will only transmit RTTY Baudot as configured in the menus presented here. Morse function, including sidetone is disabled. Changes made to Morse related configuration will be recorded but not utilized until RTTY is turned off which will re-enable Morse. CW paddles are ignored when RTTY is on. #### **FSK Assignment** FSK output can be mapped to either the K46's Key output or the PTT output. The default, FSK=PTT, sets the PTT output to be FSK and the KEY output to transmitter key. This is the way most transceivers with a separate FSK work and allows a user to run CW or RTTY without changing cables. When FSK=Key, the output is flipped, KEY output is FSK and PTT keys the transmitter. Lead-in and tail delay is applied the same way no matter which way FSKMAP is set. The most common setup on radios today is to allocate both FSK and key to an AUX connector. In either case a special cable is required that splits the 1/8" stereo output into separate Key and FSK leads. Figure 18 - RTTY Output Port Assignments #### USOS (Transmit UOS) On/Off To improve transmit integrity at the expense of extra FIGS characters, USOS mode will send two FIGs characters whenever a figures character follows a space. This reinforces the operation of UOS at the receiver which forces a letters transition after every space. #### Reverse/Normal This controls the sense of the FSK output. In normal mode (Not Reverse), Mark is signaled when the FSK output is OFF, and Space is signaled when the FSK output is ON. In reverse mode FSK if on during Mark. #### **AUTO LF/CR On/Off** When Auto CRLF is on, the K46 counts the printable characters in a line and after 45 characters, an automatic CR/LF sequence will be inserted after the next space. The character counter is reset after CR/LF. This is a very valuable feature for conversational RTTY. The operator can type away and not have to worry about running over at the end of a line. RTTY TRANSMIT SETUP2 Baud Rate 45.45 Stop Bits 1.5 Diddle Ltrs Figure 19 - RTTY Setup Menu 2 #### **Baud Rate** The K46 supports three operational speeds, 45.45 (60 WPM) 50 (66 WPM) and 75 Baud (100 WPM) #### STOP Bit Control There are two possible settings, 1.5 or 2.0 stop bits. This essentially sets the delay between letters sent in Baudot mode. # **Diddle Control** If Diddle is enabled, a constant stream of LTRS or blanks will fill idle transmission time as soon as a leading bracket [is entered on the keyboard. It will stay active until a trailing bracket] is entered. A user always starts a stream by starting with a leading bracket. They can then type at leisure knowing that diddle will fill the empty space. Either LTRS or blanks will be sent as specified. There are three choices, Diddle Off, Diddle with LTRS, and Diddle with Blanks). Most ops send a Baudot blank (0x00) for the diddle, but LTRS (0x1F) is often used instead. # **Miscellaneous Information** #### CTL-ALT-Enter Clear EEPROM and Restart This causes a Master Reset of the K46, clearing EEPROM, and reloading factory settings. Be careful when using this because it will erase all your Messages, Cuts, and Key mappings. Factory settings are: | Speed = 15 WPM | CWR Spacing 0 | Sidetone = 800Hz | |------------------------|-------------------------------|----------------------| | Autospace Off | RTTY = Off, CWR = On | Paddle Hang = 0 | | Paddle Mode = Iambic B | 1 st Extension = 0 | Letterspace = 0 | | PTT Delays = 0 | KeyComp/Weighting normal | Word Space = 7 dits | | CWR Gain = 5 | Dit/Dah Ratio = (1:3) | Serial Number = 0001 | | CWR Filter = 6 | PaddleSample = 50(1 dit) | Sleep time = Off | | CWR Threshold = 5 | Keying Output = Key1 | Paddle Watchdog = On | | LCD Brightness = 80 | WKCWR Mode = Off | User = 1 | Progress messages are displayed on the bottom row as different sections of EEPROM are initialized for each user. The basic format for these messages is: USR1: MAP KBD MSG # **CTL-ALT-DEL Software Restart** This causes a power on reset of the K46. The current mode is cleared, and all settings are reloaded from EEPROM. This is equivalent to power cycling the K46. ## **Paddle Watchdog** The K46 has an automatic transmit disable that is activated if more than 128 dits or dahs are sent consecutively. This prevents unattended keying. The output is disabled after 128 consecutive events, but the sidetone continues to sound allowing you to detect the condition (sidetone needs to be enabled). Paddle watchdog can be disabled in Configuration Menu #3:PDLwatch. # Running the K46 without a keyboard If the K46 is powered up without a keyboard, or the keyboard is disconnected it will revert to It will automatically select the receive window since a transmit window is not required in paddle entry mode. A quick press of the encoder brings up the message launch menu (see page 6). To make configuration changes, press and hold the encoder button down until the configuration menu appears. Turn the encoder to select a configuration setting and then press the encoder to select that item for editing. Next, turn the encoder to make changes and then press the encoder button to save the new setting. To exit configuration editing, press and hold the encoder button just until the menu clears. If the encoder is held too long it will put the K46 into low power sleep mode. Practice and WinKeyer modes are selected from the configuration menu. Practice can be set up using the encoder and operated with the paddles. To leave Practice, press the encoder pushbutton and this will take you back to the normal K46 operational screen. Neither paddle nor keyboard is required for WinKeyer mode. Just select it from the menu and exit WinKeyer Mode by pressing the encoder. # Using a Straight Key with the K46 The K46 can be set up to work with a straight key. Wire the key to an 1/8" stereo plug as shown below. You must use a stereo connector and the ring must be left unconnected. Once the cable is ready, plug it into the K46 paddle input jack and then select **Straight** key mode in Configuration Menu #2:KeyrType. Figure 20 - Straight Key Input Connections Unlike the K44 and other CW keyboards, the K46 fully supports straight key input for all modes. The user can run Echo and QSO practice from a straight key as well as normal on air transmit. Straight key input will be displayed in the transmit window just like paddle input would be. Neither straight nor iambic input will be K46 shown in the Fast Tx View window since that is reserved for type ahead and messages. It's not possible to buffer anything while entering letters on a paddle so viewing the transmit window is all that is needed. When text is entered on a straight key, the status line TX WPM readout will be updated with the user's straight key speed. This temporarily changes the transmit speed for keyboard entry as well so that if someone changes over from straight key to keyboard, the speed will be appropriate. If the user decides to go back to the default WPM, click the encoder back and forth once, and the keyboard speed will be restored. #### **PTT Operation** K1EL The K46 provides a separate PTT output that is enabled during transmit. The most common usage of the PTT output is to pre and post key a linear amplifier or antenna switch. In those cases, it's desirable to assert PTT in advance of keying (Lead In), hold throughout the keying interval, and then deassert it after keying is complete (Tail). Some amount of Tail Time must be set for Lead-In to work. If Tail Time is set to zero, then the lead in delay will activate between every letter. Tail delay should be set to bridge the gap between successive letters for Lead In will work properly. These delays are customized depending on an individual station requirement to prevent arcing and protect receiver and transmitter inputs and outputs. The PTT output is only available for Port 1 when PTT is enabled. A special PTT delay called Hang is similar to tail but only is used for paddle sending. All of these delays are set in the configuration menus #1 and #2. #### Sinewave Sidetone The sinewave sidetone module consists of a sine wave oscillator driving an audio amplifier. This SineTone module provides enough volume to drive a pair of headphones or a small speaker. Sinetone is enabled in Config menu #4:SineST. When enabled, sidetone volume and pitch are adjusted in Config menu #3, by Shift-PGUP/PGDN and CTL-PGUP/PGDN, or by turning the encoder with either the CTL held for pitch or ALT held for volume. Updated settings are flashed on the status line. When SineTone is enabled, the K46's internal sidetone is automatically disabled. # **Built In Audio Splitter** This was a very popular K45 accessory which is included in the K46 design. Normally when the K46's audio input cable is plugged into a receiver's external speaker or headphone jack, the radio's internal speaker is disabled. Inside the K46, the audio splitter accepts speaker audio and passes it on to an external speaker connector. Audio is tapped off and fed to the CWR input. An audio transformer transforms the low impedance of the speaker connection to the high impedance CWR input. If the user wants to connect a receiver's line out to K46 AF IN it will still work fine since the impedance of the K46 input is around of 600Ω. However, If line out is used, the AF OUT can't be connected to a low impedance speaker. Figure 21 – Audio splitter block diagram # **Numeric Pad Operation Mode** When desktop space is limited, the K46 can operate with a small numeric keypad. Numeric Keypad operation is enabled by turning NumPad mode on in Configuration
Menu #4:NumPad (see page 30). The numeric pad has two sets of key functions as determined by the NumLock key. For example, when NumLock is off pressing 7 will send the number 7, when NumLock is on the Home function is selected. Most pads have an NumLock LED that shows which set is active. In any case, NUML is momentarily flashed on the status line when NumLock is set to on. Figure 22 - Numeric Pad Example Numeric pad key mappings, in both NumPad and normal modes, are shown in the following table. # **Numeric Pad Key Mapping Table** | NumPad Mode Off | | | NumPad Mode On | | | |-----------------|-------------|-------------|----------------|-------------|--| | Key | NumLock Off | NumLock On | NumLock Off | NumLock On | | | / | / | / | Tab | Tab | | | * | * | * | Catch call | Catch call | | | - | _ | _ | Send Msg 10 | Send Msg 10 | | | 7/Home | Home | 7 | Home | Send Msg 7 | | | 8/Up | WPM+ | 8 | WPM+ | Send Msg 8 | | | 9/PgUp | PgUp | 9 | PgUp | Send Msg 9 | | | + | + | Send Msg 11 | Send Msg 11 | Send Msg 11 | | | 4/Left | S/N - | 4 | S/N - | Send Msg 4 | | | 5 | 5 | 5 | Toggle Tune | Send Msg 5 | | | 6/Right | S/N + | 6 | S/N + | Send Msg 6 | | | BackSpace | BS | BS | Send Msg 12 | Send Msg 12 | | | 1/End | End | 1 | End | Send Msg 1 | | | 2/Down | WPM- | 2 | WPM- | Send Msg 2 | | | 3/PgDn | PgDn | 3 | PgDn | Send Msg 3 | | | Enter | Enter | Enter | Send Exchg | Send Exchg | | | 0/Ins | Pause Msg | 0 | Pause Msg | Pause Msg | | | 000 | Ignored | Ignored | Ignored | Ignored | | | ./Del | Cancel Msg | • | Cancel Msg | Cancel Msg | | Table 3 – Numeric Pad Key Mapping Table With the set of keys available in NumPad mode, the user can send messages and control Pause and Cancel. The fast callsign capture function is activated with the * key as well as send exchange with the Enter key. NumPad mode should only be used when a Numeric Pad attached, since it affects some of the standard keyboard mappings. The user would first change configuration to NumPad on and then swap keyboard with a key pad. To go back to a keyboard, the key pad is unplugged, replaced with a keyboard, and the configuration changed to NumPad off. # **Command Key Assignments Chart** | Key | Normal | Shift | CTL | ALT | | | |---|--------------------|---|--------------------------------------|--------------|--|--| | F1 | Play Message 1 | Edit Messsge 1 | | | | | | F2 | Play Message 2 | Edit Messsge 2 | | | | | | F3 | Play Message 3 | Edit Messsge 3 | | | | | | F4 | Play Message 4 | Edit Messsge 4 | | | | | | F5 | Play Message 5 | Edit Messsge 5 | | | | | | F6 | Play Message 6 | Edit Messsge 6 | | | | | | F7 | Play Message 7 | Edit Messsge 7 | | | | | | F8 | Play Message 8 | Edit Messsge 8 | | | | | | F9 | Play Message 9 | Edit Messsge 9 | | | | | | F10 | Play Message 10 | Edit Messsge 10 | | | | | | F11 | Play Message 11 | Edit Messsge 11 | | | | | | F12 | Play Message 12 | Edit Messsge 12 | | | | | | ↑UP | Speed +1 WPM | | CWR Spacing + | CWR Thresh + | | | | ↓ DOWN | Speed –1 WPM | | CWR Spacing - | CWR Thresh - | | | | ← RIGHT | Increment Serial # | | CWR Gain + | CWR Filter + | | | | \rightarrow LEFT | Decrement Serial # | | CWR Gain - | CWR Filter - | | | | | | | | | | | | ESC | | Start command entry | | | | | | INSERT | | Pause Transmit | | | | | | DEL | | Cancel Message | | | | | | Backspace | | | Delete letter on left in Tx Window | | | | | PGUP | | Scroll display up (View older text) | | | | | | PGDN | | | croll display down (View newer text) | | | | | TAB | | Toggle display view (swap Rx and Tx) | | | | | | HOME | | Return display view to input line (BEG) | | | | | | END | | Move display view to oldest line | | | | | | ENTER | | Various functions depending on current mode | | | | | | | | | Show Tx Progress | | | | | SHIFT-PGUP/PGDN Sidetone Frequency Up/Down | | | | | | | | CTL-PGUP/PGDN Sidetone Volume Up/Down | | | | | | | | CTL-ALT-En | ter | K46 Restart/Reload Factory Settings | | | | | | CTL-ALT-De | | K46 Power on Reset | | | | | | ALT or CTL 1:CfgMenu #1, 2:CfgMenu #2, 3:CfgMenu #3, 4:CfgMenu #4, 5:CfgMenu #5 | | | | | | | Table 4 – Immediate Key Command Table # **Encoder Function Chart** | Encoder Clockwise | Increase WPM | CTL: STBD Vol+ | ALT: STBD Pitch+ | |--------------------------------|--------------|--------------------------|------------------| | Encoder CCW | Decrease WPM | CTL: STBD Vol- | ALT: STBD Pitch- | | Encoder Pushbutton Quick Press | | Show Message Launch Menu | | | Encoder Pushbutton 3 sec Press | | Show Configuration M | enu | | Encoder Pushbutton 6 sec Press | | Turn K46 Power Off | | Table 5 – Encoder Function Table # **Buffered Message Command Chart** | Cmd | Description | Syntax | |-----|---------------------|--------------------------------------| | J | Jump to message | \Jn n=1-9, A,B,C | | n | Call Message | \n n=1-9, A,B,C | | D | Decrement Serial # | \D | | I | Increment Serial # | \I | | Н | Set HSCW rate | \Hn n=rate/1000 (see page 12) | | Q | Set QRSS Rate | \Qn n=rate (see page 13) | | K | Key Down | \Knn nn=seconds | | M | Merge Letters | \Mcc | | N | Play Serial# | \N | | 0 | Change Output Port | \On n=1 or 2 | | Р | Pause | \Pnn nn=seconds | | R | Cancel Speed Change | \R | | S | Set Speed | \Snn nn=wpm | | W | Insert a Wait | \Wnn nn=seconds | | Χ | Cancel Buffered WPM | \X | | Z | Easy beacon | \Znn <string> nn=cycle time</string> | Table 6 - Buffered Command Table # **Escape and Control Key Command Chart** | Esc | Description | CTL | Description | |-----|--------------------------|-----|------------------------| | С | Set Configuration Menu | В | Send 73 de MYCALL | | D | Dump Display Menu | С | Fast Catch Callsign | | Н | Show Help Menu | D | Decrease Weight | | K | Edit Key Mapping Menu | E | Send 8 Error Dits | | L | Clear Rx & Tx Windows | | Increase Weight | | М | Show Message Menu | ٦ | Clear Current Window | | 0 | Set Low Power State | M | Match Tx WPM to Rx WPM | | Р | Show Practice Menu | Ν | Send Serial Number | | R | RTTY Setup Menu | Q | Send CQ de MYCALL | | S | Serial Number Setup Menu | R | Send 5NN | | U | Firmware Upgrade Menu | Т | Toggle Tune | | W | Start Winkeyer Mode | J | Change User | | ESC | Cancel | ٧ | Resync K46 Display App | | | | X | Send Exchange | | | | Υ | Toggle Backlight | | | | Z | Reset CWR to defaults | | | | Α | Set CWR RxWPM to TxWPM | Table 7 – ESC and Control Commands Table # Appendix A - Configuration Menu Layouts and Descriptions Configuration is accessed by pressing **ESC** followed by **C**. The various options are divided up into five menus each with eight entries. Use the right and left arrows to move between menu columns and the up and down arrow keys to move between rows. The selection will wrap from one menu to the next in right or left directions. The menus will wrap from first to last and last to first which helps in moving between the first and last menu quickly. Each entry in the menu is indexed by number 1 to 8. You can select this entry just by entering the number. Otherwise move the selection cursor and press the enter key. This brings up that item for editing. Some values are toggled by the left/right arrows, other by entering them on the keyboard. When finished either press ENTER to save or ESC to cancel the change. This returns to the main configuration menu. From there another item can be selected or press ESC to leave configuration. There is shortcut to get from the main display to a specific menu: hold **ALT** or **CTL** down and then press the desired menu number (1 to 5). Configuration can also be accessed by pressing and holding the encoder button down until the menu appears. Entries are then navigated by turning the encoder. Once a desired entry is reached press the encoder once quickly to open that entry. Turn the encoder to scroll though the allowable values. Once the value selection is complete, it is saved by pressing the encoder button again. It is not possible to cancel a selection made by the encoder. Instead the entry must be re-opened and the value set back to what is was. In either case, once the item is saved, control is returned to the main configuration menu. To leave configuration, press and hold the encoder until the menu is replaced by the K46 main window. # Configuration Menu #1 1:TxWPM 5:AutoSpac 2:Weight 6:WordSpac 3:LtrSpc 7:Pdl Samp 4:KeyComp 8:Pdl Hang Figure 23 - Configuration Menu #1 ## 1:TXWPM - Set the Speed in WPM Set the CW transmit speed to a rate between 05 and 99 WPM. # 2:Weight - Set Keying Weight Set the keying weight in a percentage from 50% to 150%. When set to 100 % the dit time is equal to the inter-element time, which is normal. Values less than 50 reduce weighting while values greater than 50 increase weighting. Weighting does not affect sending speed because any increase in keyed time is subtracted from spacing time. Reduction in weighting results in a thinner sound while increased weighting results in a heavier sound. Since weighting will track speed, one weighting setting will sound the same at all speeds. ## 3:LtrSpc - Set Extra Letterspace in Percent Enter a value from 0 to 62, to specify an additional letterspace as a percentage of the default letterspace (3 dit times) to be applied between letters. The maximum adjustment is 62%. ## 4:KeyComp - Set Key Compensation (0 to 32mSec) Keying Compensation specifies a fixed amount of time to be added to the length of both dits and dahs. QSK keying on modern transceivers can cause shortening of these elements which is especially noticeable at high speeds. The K46 allows the length of the elements to be increased uniformly to compensate for this. The adjustments are made in one-millisecond steps. The maximum adjustment is 32 mSecs. Key compensation is very similar to Weighting in that any adjustment added to the dits and dahs is subtracted from the spacing, so the resulting speed is not changed. The difference between
weighting and keying compensation is that compensation is independent of speed, so if 10 mSec of key compensation is selected, 10 mSec will be always be added regardless of speed. So be careful at high speeds with large values of keying compensation since dits and dahs may run together with no spacing at all. #### 5:AutoSpac - Enable/Disable Autospace Mode (applies to paddle input only) When autospace is enabled and you pause for more than 1.5 dit times after a dit or dah the K46 will interpret this as a letter-space and will not send the next dit or dah until a full letter-space time has been met. The normal letter-space is 3 dit spaces but this can be adjusted by the Letterspace parameter command. The K46 has a paddle event memory so that you can enter dits or dahs during the inter-letter space and the K46 will send them as they were entered. With a little practice, autospace will help you to send properly spaced Morse code. #### 6:WordSpac - Word Spacing Control Normally, a wordspace is seven dit times. This can be adjusted in a range from 6 to 12 dit times. A tighter space speeds up exchanges which is helpful in a contest. Longer word spacing makes it easier to copy very fast speeds since it provides extra space to separate words. # 7:PdlSamp - Paddle Sample Time Adjustment This adjusts the delay from the start of a dit or dah to when K46 latches the next paddle press. Normally the K46 waits one dit time before latching a new dit or dah. This delay can be adjusted to be greater or less than one dit time. If the delay is too short the operator could inadvertently send an extra dit or dah. If the delay is too long the next dit or dah could be missed. A setting slightly less than default is usually the best for most users. The delay is calculated with this formula: DELAY = (SAMPLE ADJUST*DIT TIME)/50 where Sample Adjust is between 50 and 150% ``` At Sample Adjust = 50 = One Half Dit Time At Sample Adjust = 100 = One Dit Time (Factory Default) At Sample Adjust = 150 = One and One Half Dit Time ``` Special Case: If Sample Adjust is set to zero, then both dit and dah latches are disabled. # 8:PdlHang - Set Transmit PTT Hang Delay Time (Paddle Hang) A description of PTT can be found on page 22. Hang delay is a special tail delay that is specific to paddle input. It is proportional to sending speed so that it will always hold PTT between letters. Since this time is different between users, there are four different delay profiles: ``` HangTime = 1: wait 1 wordspace + 1 dit before ending PTT HangTime = 2: wait 1 wordspace + 2 dits before ending PTT HangTime = 4: wait 1 wordspace + 4 dits before ending PTT HangTime = 8: wait 1 wordspace + 8 dits before ending PTT ``` Hang delay is different than PTT tail delay in that it is proportional to code speed while PTT delay is a primarily a fixed delay time. This means you don't have to tweak the PTT delay every time you change sending speed. Remember that Hang only applies to CW sent by paddle. PTT for CW sent by message is governed by Tail delay. # Configuration Menu #2 1:PdlTone 5:PTT Lead 2:PdlSwap 6:PTT Tail 3:PdlMute 7:Tune 50% 4:OutPort 8:KeyrType Figure 26 – Configuration Menu #2 #### 1:PdlTone - Paddle Only Sidetone Enable Some operators only want to hear sidetone that is entered on the paddles and not when using the keyboard. When PdlTone is enabled, only the paddle will generate sidetone. #### 2:PdlSwap - Swap Paddles As a convenience, the paddle operation can be changed. Normally dits are assigned to the left paddle and dahs to the right. When swap is enabled, dahs are assigned to the left paddle and dits to the right. This assumes that the left paddle is connected to the tip of the paddle connector and right to ring. #### 3:PdlMute - Paddle Enable (Muting) Control To prevent unwanted paddle entry, the paddle can be turned off with this setting. # 4:OutPort - Modify Output Port K46's keying port connector can be configured in four different ways. The K46 can key one radio if PTT is required or two if PTT is not required. In addition, the transmit output can be turned off (Mute) if you want to use the K46 for CW practice and prevent transmitter keying. Sidetone is still active when transmit is muted. The up/down arrows will cycle through four options which are: - 1) Select Port 1: Tip Output = Key Ring Output = PTT - 2) Select Port 1: Tip Output = Key Ring Output Off (No PTT) - 3) Select Port 2: Tip Output Off Ring Output = Key (No PTT) - 4) Transmit output muted # 5:PTT Lead - Set PTT Lead-In Delay Time (0-99) Lead In is entered as a two-digit number which sets the delay in 10's of milliseconds. For example, if Lead-In is set to 26 the delay will be 260 milliseconds. The maximum delay that can be set is 99 or 990 milliseconds. # 6:PTT Tail - Set PTT Off Delay Time (0-99) Specifies the delay from the end of CW transmission to PTT de-assertion. This is set in units of 10 mSecs. Figure 27 – Lead-In and Tail Timing # 7:Tune 50% - Set Keying Duty Cycle for Tune Mode Some Ops prefer to use a 50% duty cycle when keying their transmitter for tuning purposes. This reduces the power dissipation in the transmitter final and can contribute to a longer transmitter life. # 8:KeyrType - Select Paddle Mode The K46 supports six keying modes: lambic A, lambic B, three Ultimatic versions, and Straight key. In lambic and Ultimatic mode the K46 makes dits and dahs automatically based on which paddle you press. In either lambic mode, alternating dits and dahs are sent while both paddles are held closed. In lambic mode B an extra alternate dit or dah is sent if both paddles had been pressed and then released. In Ultimatic mode, when both paddles are pressed, the keyer will send a continuous stream of whichever paddle was last pressed. For example, if you are holding the dit paddle and then press and hold the dah paddle, the keyer will switch from sending continuous dits to continuous dahs. In Ultimatic Dit mode, dits always take priority while dahs take priority in Ultimatic Dah mode. In straight key mode the K46 only accepts input between the tip and ground of the paddle connector. (see page 22, fig 20). The K46 will decode straight key input just as it does for paddle input. This applies to normal sending and also both Echo and QSO practice. # Configuration Menu #3 1:DDratio 5:Sidetone 2:1stExtn 6:STvolume 3:Farnsw 7:ST Freq 4:ASRmode 8:PDLwatch Figure 28 – Configuration Menu #3 # 1:DDratio - Set Dit/Dah Ratio (66 to 132%) Default is 50% for standard 1:3 dit/dah ratio. Smaller values decrease the ratio while larger values increase the ratio. This causes an intentional distortion to the Morse waveform. Some ops use this option to make their CW sound less "machine like". Experienced CW ops will recommend that you should always leave the ratio set at 1:3 which is the universal standard. Figure 29 - Dit Dah Ratio Timing # 2:1stExtn - Set 1st Element Extension The K46 addresses problems often encountered when keying older transceivers with slow break in response. Due to a slow receive to transmit changeover time, the first dit or dah of a letter sequence can be chopped and reduced in length. Adding a fixed amount to the first element of a sequence can compensate for this. In other words, the first dit of an R would be elongated but the subsequent dah-dit is sent normally. The compensation amount is transceiver dependent and is generally independent of sending speed. Note though that this is usually only a noticeable problem at higher CW speeds >30 WPM. The value is set in milliseconds and must be in the range of 0 to 99. A challenge in this scheme is to determine when sending has stopped long enough to cause the transceiver to switch back to receive. If it has it'll require a new first element correction on the next sequence. The K46 uses the PTT tail timer to determine this so set the tail timer to roughly match the transmit to receive changeover time of the transceiver and things will work fine. It takes some trial and error to get it set up right. This can be used for port 1 or port 2 since the PTT output is not required, only the timer is used. Unfortunately, it's not possible to set a different PTT times for port 1 and port 2. Figure 30 - First Element Timing # 3:Farnsw - Toggle Farnsworth Sending Farnsworth spacing is useful for CW practice because it encourages you to learn characters by sound not individual dits and dahs. Letters are sent at the Farnsworth speed while maintaining the default code speed. For example, if Farnsworth is set to 25 WPM and the operating speed is set to 7 WPM, individual letters will be sent at 25 WPM while spacing between letters is at a 7 WPM rate. To disable Farnsworth mode, set it to zero. Note that Farnsworth is activated only when it is set to be faster than the current sending speed. # 4:ASR - Automatic Send/Receive Window Control When ASR is enabled, the display window will automatically change to the transmit window whenever CW text is entered by paddle or keyboard. ASR is activated only when viewing the receive window. #### 5:Sidetone - Turn Sidetone On/Off The K46's internal sidetone can be turned off when using a transceiver's sidetone or an external code practice oscillator. When the accessory sidetone board is installed, internal sidetone is automatically turned off. This command will then control the sidetone board enable. ## 6:STvolume - Set Sidetone Volume (used for internal speaker or Sinetone module) The K46 internal sidetone is not extremely loud with only 4 levels, users find that adjusting the frequency can often increase the apparent volume. Alternatively, the external Sinetone board provides ample volume in all cases. When this command is entered, sidetone is keyed which makes adjustment easier. #### 7:ST Freg - Set Sidetone Frequency (used for internal speaker or Sinetone module) The K46 sidetone is adjustable over a wide range of audio frequencies. When this command is entered, sidetone is keyed which makes adjustment easier.
8:PDLwatch - Paddle Watchdog Control To prevent a runaway paddle, the K46 has a built-in paddle watchdog that automatically turns keying outputs off after 128 successive dits or dahs, this command allows this to be disabled. # Configuration Menu #4 1:SineST 5:CWR Gain 2:BLtimer 6:CWR Filt 3:NumPad 7:CWR Thrs 4:CWR Pwr 8:CWR Spac Figure 31 - Configuration Menu #4 # 1:SineST - Enable Sinewave Sidetone The SineTone module generates sinewave sidetone audio. Both the volume and pitch are adjustable by keyboard command. The output level is sufficient to drive a set of stereo headphones or a small speaker. When SineST is enabled the internal sidetone speaker is automatically disabled. Adjustments: CTL-PGUP/PGDN: Pitch Shift-PGUP/PGDN:Volume #### 2:BLtimer- Backlight Timeout The K46 has an onboard timer that will turn backlight off after a specified length of time. There are 7 delay settings: 0, 10, 20, 30, 40, 50, 60 minutes which is selected by up/down arrows. If the delay has been set to a non-zero value and the K46 is not used during that time, backlight will be turned off. It will be turned back on when the encoder, paddle, keyboard, or CWR provide input. When the timer is set to zero, backlight will stay on unless it is forced off with the **^Y** command. ## 3:NumPad - Numeric Keypad Mode The K46 can be set up to use a small numeric keypad for input. This is useful for contests with limited desk space. All twelve message keys can be accessed as well as several function keys. Num Pad mode is covered in detail starting on page 23. # 4:CWR Pwr - Set CWR Power On/Off The CW Receive function is on by default. It can be turned off to reduce power consumption. 5:CWR Gain - Set CWR Gain Level 6:CWR Filt - Set CWR Noise Filter Level 7:CWR Thrsh - Set CWR Threshold 8:CWR Spacing - Set Spacing Adjustment These are settings that can improve the quality of the CWR decode. They are discussed in detail in the K46 CWR Adjustments section on page 35. ## Configuration Menu #5 1:BackLt 5:Serial # 2:WK CWR 6:ShowRevs 3:Volts 7:WordWrap 4:CW Prac 8:WinKeyer Figure 32 – Configuration Menu #5 #### 1:BackLt - Set the LCD Backlight Intensity The brightness of the LCD backlight can be adjusted from 10% to 99% with 99% being the brightest. # 2:WK CWR - Enable CWR Marquis Display in WinKeyer Mode When this is turned on, the CWR tuning indicator and a single CWR side scrolling marquis text line are shown on the top two lines of the WinKeyer Mode display. Back scrolling is not supported. #### 3:Volts - Show Logic Supply Voltage For diagnostic purposes, the K46's main logic supply voltage can be displayed. For proper operation, this voltage should be 3.3V plus or minus 5%. #### 4:CW Prac - Practice Launcher CW Practice can be started from the Configuration Menu #5. This allows Practice to be started when no keyboard is attached to the K46. Move the cursor to this entry and simply press the encoder. The practice menu will be displayed, and all options can be set using the encoder. When everything is ready, press the encoder until the Practice Menu disappears and a practice session will start. # 5:Serial # - Set Serial Number For contesting, the ability to send and keep track of a serial number is indispensable. This command allows you to preset the serial number to any 5-digit number from 00001 to 99999. Any non-numeric value entered will be ignored. Once the serial number is set you can increment, decrement, and send the serial number using buffered commands /I, /D, /N respectively. Left/Right arrows also increment/decrement the value. # 6:ShowRevs - Display Firmware Revisions For informational purposes all the system firmware revisions are displayed: ``` H7 A3 LA 313 PA (Hardware 7, K46 A3, LCD A, WinKeyer 3.13, PSoC A0) ``` # 7:Word Wrap - Set Word Wrap On/Off When word wrap is on, new lines will be carried over on word instead of letter boundaries. HERE IS AN HERE IS AN ILLUST ILLUSTRATION OF RATION OF WORD WR WORD WRAP AP CONFIGURED OFF CONFIGURED ON #### 8:WinKeyer - WinKeyer Mode Launcher WinKeyer Host Mode can be started when a keyboard is not attached. Just move the cursor to this entry and press the encoder. The WinKeyer menu will be displayed and the K46 can then be connected to a host PC. To exit WinKeyer mode, simply press the encoder. The WinKeyer launcher will abort if no host is attached. This prevents a hang condition if the user tries to connect to a host that isn't there. For more information about WinKeyer Mode, refer to the **ESC-W** command in page 8. If WKCWR mode is enabled the top two lines are CWR status and the CWR Rx data stream. # Appendix B - K46 Modem Quick Start #### **Interconnection Diagram** The following diagram illustrates a K46 set up. A CW paddle is optional and not a requirement. A PTT connection would not be required for normal CW keying of a transmitter or transceiver, the PTT output is used primarily in RTTY mode, HSCW mode, or to key an amplifier or antenna relay. The keying output of the K46 is capable of keying virtually any solid state or grid block vacuum tube transmitter and is optically isolated from the K46 chassis for safety. Figure 33 - K46 CW Keyboard Hookup Diagram #### Which Keyboard to Use The K46 will accept just about any wired or wireless USB keyboard. Surprisingly, some wireless USB dongles draw significantly more current that a standard wired keyboard. This may be a consideration for portable battery operations. The keyboard can be plugged or unplugged while the K46 is powered on. We have not had good luck with Logitech 'Unified Interface' keyboards. Generic, basic function keyboards always work the best. The MCALLY compact wireless keyboard sold on Amazon is highly recommended. ## **Power Supply** The K46 is powered through the USB host connector. This means it can be powered by connecting it to a host PC, a USB charger, or battery pack. The current draw of the K46 is low, about 120-150 mA so even a small USB phone charger will work fine. Use a good quality USB charger, one with good voltage regulation. Cheap 12V to USB converters are not well regulated especially when first plugged in. If you have to use one of these, never connect it to 12 volts while it is connected to the K46. We have seen input surge voltages exceeding 15 volts which can and will damage the surge protection circuitry in the K46. Always plug the converter in first and then plug in the K46. # Power On/Off and Standby After connecting the K46 to a USB power source, it will power up when the encoder push button is pressed. Press and hold for 6 seconds to turn the K46 off. The K46 can be put into a low power standby mode by the **ESC-O** command. In standby mode, the display backlight is turned off and other electronics are set to a low power state. To wake the K46 up, simply turn the encoder one or two clicks. # Internal Sidetone Speaker The sidetone speaker on the K46 provides audio feedback as Morse is transmitted. There are four internal sidetone volume levels that are set via Configuration Menu #3:STvolume. In most setups, the K46's sidetone would be turned off and a transceiver's sidetone used instead. However, the K46's sidetone speaker is useful for code practice or testing purposes. Please note that the internal speaker can't be used for receiver audio. (This was a common question from K42 and K44 owners). A rear panel output is provided for sine wave sidetone audio. It is capable of driving a set of headphones or small speaker. It is enabled by an entry in configuration menu #4 (page 30) Further external sidetone info can be found on page 22. #### **Transmitter Connection** This is highly transmitter/transceiver dependent. It can be as simple as making up a cable with an 1/8-inch mono jack on each side or as complicated as using stereo jacks and modifying the keying mode in your transceiver's setup menu. Here are the basics: Figure 33 above shows which pins on the stereo output plug do what, your job is to check your radio's manual and determine what the cable/connector wiring should be. In general, the key line is the tip of the phone jack and the transceiver needs to be configured such that its internal keyer is disabled and set up to run in straight key mode. We recommend using a stereo keying plug and leaving the ring unconnected (this can be easily accomplished by selecting Key1 without PTT in Configuration Menu#2:outPort). This will be compatible with almost all modern transceivers. The K46 output is open drain and essentially looks like a switch to ground. You won't measure any voltage on the key output; it is just a passive output. If you need to test, use a DVM and measure the resistance from tip to sleeve, with the plus (red) lead on tip, negative (black) lead to sleeve. Keep in mind that the key output jack is isolated from ground, so you won't get any readings by measuring tip to K46's metal enclosure. #### Power it up Press the encoder to turn the K46 on, the WK3 IC sends an R in sidetone which is followed by the power on splash display. As shown below, the firmware revisions of each of three microcontrollers and LCD driver are displayed. If any of the controllers failed self-test, a warning message will be displayed. A sidet one ND is sent If the LCD display fails. After about four seconds, the splash will clear and be replaced by the main display window. The K46 will install settings from EEPROM and attempt to attach a USB keyboard. The keyboard can be plugged or unplugged at any time; the K46 will detect the change and handle it properly. K1EL K46 CW MODEM A0 HW Rev 7 LCD Rev A WK Rev 31.3 PSoC Rev A0 Figure 34 – Typical K46 Power On Screen The power on display reports the firmware versions of the Console, WinKeyer, and PSoC microcontrollers. Figure 34 reports K46 PIC F/W revision A0, LCD driver revision A, WinKeyer PIC revision 31.3, and PSoC revision A0. If the K46 had been turned on after a system reboot (CTL-ALT-ENTER), some additional messages will be displayed as the system data
structures are rebuilt. On first time power up, or after CTL-ALT-ENTER, K46 configuration is reset to default values. Some of these you may like, others not so much. All settings can be modified easily through the Configuration Menus (press **ESC** followed by **C**). A detailed description of all the entries in the various menus is provided in Appendix A. Since all changes made in Configuration as stored in EEPROM, the next time you power up the K46, it will start up the way you like. Initially all message slots are cleared, but as you load messages, they are automatically saved in EEPROM. There are two display views that must be understood before we go any further. The initial view is the receive display which will show characters decoded by the built in CW decoder. If you press the TAB key, the display will toggle over to the transmit view. What is typed on the keyboard or enter on the paddles will be displayed in the transmit window. Whatever you type or paddle will be accompanied by internal sidetone. Notice that you can type ahead of the outgoing Morse. The Transmit window immediately shows what you type and what will be transmitted. If you want to see what is being sent in real time, press the Windows key and a third display will come up showing transmit progress. When you release the Windows key, the previous display will be shown. When you have finished and want to monitor what the other station is sending, Press the TAB key to swap back to the receive window and see what the CWR is decoding. If you want to type ahead while they are sending, press INSERT to pause transmit and then you can go ahead and type ahead. When the other station is done, press INSERT again and the transmit buffer will be sent. While it is sending you can continue to add more to transmit. If you get tired of pressing the TAB key to move between the Rx and Tx windows, enable ASR mode. This will automatically flip you to the transmit window when you type. (see Config Menu#3:ASRmode on page 29). When you pause transmit with the INSERT key, a flashing H will be displayed on the status line. This is a reminder that you have paused transmit. If you want to cancel transmit that is underway, press the DELETE key. If your keyboard has LED lights, hold status will be displayed there as well. Now let's load a message: Hold the SHIFT key down while you press F1, release both keys and the Edit Message window will appear. We will load a message into the F1 slot. Type CQ CQ DE K1EL and then press the backspace key to erase my callsign and replace it with your callsign. When you are finished, hit ENTER and the message will be stored in EEPROM. Now every time you hit the F1 key your message will be sent. You will notice that when you press the F1 key only the token for the F1 message \(\begin{array}{c} \begin{array}{c} \text{will} \text{ be shown.} \\ \text{If you want to see the expanded message, press the Windows key, and watch it in the Fast Tx View window as it is sent.} \end{array} You can adjust the sending speed at any time by turning the rotary encoder or pressing the up/down arrow keys. The new transmit speed will be displayed on the right side of the status line. A handy command is Tune; press **^T (CTL-T)** and the K46 will hold key and sidetone on until you press either a key on the keyboard or press the CW paddle. A 50% tune duty cycle can be selected by an entry in the Configuration Menu #2:**Tune 50%**. One last thing to mention before we move on is how to use a set of paddles with the K46. You can enter Morse on the paddles at any time. If the K46 is sending a message or something from the outgoing queue, it will be cancelled by the first paddle press and you can break right in. If you want to exchange the dit and dah paddles, there is a setting in Configuration Menu #2 for that as well as other Paddle settings. #### **Audio Input for CWR Checkout** The K46 has a built in Morse Reader (CWR) that demodulates, decodes, and displays Morse from audio input that is connected to the K46's audio input. There are several guidelines for audio input that if followed will optimize the performance of the reader. The AF input has in input impedance of 600 ohms. It is intended to be driven by the audio line out, headphone jack, or external speaker jack of a radio receiver. It takes a little bit of work to accomplish this, but it is well worth the effort. Unlike a speaker output (which is both low impedance and high level) the line output provides a fixed audio level that is not affected by the radio's AF gain setting. A radio's speaker output is not suitable for driving the K46 since in most cases when you plug a connector into the radio's speaker jack, the radio's internal speaker is disabled. The K46 does not have an internal speaker so there will be no audio to listen to. An option is to use a splitter cable and feed one side to a speaker and the other side to the K46. This will work to some degree but since the level is dependent on the AF gain control, you may have to adjust the CWR gain every time you change the radio's AF gain. So bottom line, use line out if possible. SignaLinkTM or similar devices that plug into a radio's AUX connector can provide an easy way to get at the line out audio signal. Most of these devices bring line out to a separate 1/8" AUX jack that can easily be connected to the K46. ## **CWR Basics** It's easy to operate the CWR but there are just a few things to keep in mind. First, make sure you are looking at the receive window. The filters in the K46 CWR are fixed at 725 Hz. For best results, adjust your receiver so that its passband is centered on 725 Hz. When you hear a station, slowly tune through it while watching the five bar LCD display on the status line. Watch for a peak movement to the right. You will see a peak as you pass through 725 Hz. It is easier to adjust the receiver passband at this time. Once you have the station tuned in properly, CW will be decoded and displayed. When audio overload happens, the right most bar will display a +. For best results adjust the audio level to avoid overload. The K46 has adjustable gain control so that you can adjust the audio level without changing your receiver's audio level. (see CWR Adjustments on page 35) # **CWR Tuning Display** Figure 35 - CW Level Indicator The LCD bar display is a very simple indication of both tuning frequency and signal strength. For this reason, a signal that rapidly changes in signal strength can make tuning slightly more difficult. The accuracy of CW decoding can vary as a signal fades in and out. With very deep fades, the K46 CWR may print an erroneous character or get out of sync for a couple of characters. With some practice it is fairly easy to learn what the K46 is looking for and adjust the receiver tuning appropriately. # **CWR Adjustments** There are four adjustments that can be made to the CWR decoder's signal path that can compensate for poor decoding conditions. Gain, low pass filtering, noise floor thresholding, and inter-letter spacing can all be adjusted to improve copy. # **CWR Gain Adjustment** Signal gain is adjustable to compensate for low or high receiver level. The gain should be set to a point that is high enough to provide sufficient signal level to run the CWR without causing overload on very strong signals. Ten different gain levels are provided. A fast way to adjust CWR gain is to hold down the CTL key and press the left and right arrow keys. New values of gain are flashed on the status line: CG:n where n is a gain level between 0 and 9. There are ten gain settings. CWR gain can also be adjusted in Configuration Menu #4:CWR Gain. # **CWR Low Pass Filtering** There is a digital low pass filter in the CWR DSP processing path. This essentially controls how very short impulses are processed. It can effectively heal elements that are broken up by very fast noise impulses. Ten levels of low pass filtering are provided. A fast way to adjust the CWR filter is to hold down the ALT key and press the left and right arrow keys. New values of filtering are flashed on the status line: CF:n where n is a filter level between 0 and 9. Filtering can also be adjusted in Configuration Menu #4:CWR Filt. #### **CWR Noise Floor Threshold Adjustment** Although low pass filtering on the K46 CWR will help decode a noisy signal, a very high level of background noise can degrade copy quality. Threshold adjustment can help with background noise by raising the signal threshold so that the CWR will ignore any signal below the threshold. This can help greatly when copying a station just above the noise level. Thresholding is adjusted by holding the ALT key down while pressing the up and down arrows. The updated threshold level is flashed on the status line as CT:n where n will be the threshold level setting. For best results, set the threshold just above the point where random band noise triggers letter decoding. Threshold can also be adjusted in Configuration Menu #4:CWR Thrsh. # **CWR Inter-letter Spacing Allowance** Another challenge is trying to copy poor sending technique; letters that are run together, poorly constructed, or varying widely in speed are not easy to copy by ear or machine. Adjusting the spacing allowance helps compensate for incorrect spacing between dits and dahs which can cause letters to be run together or words broken apart. There are ten settings which are adjusted by holding the CTL key down while pressing the up and down arrows. The updated spacing adjustment is flashed on the status line as CS+n or CS:-n where n will be the adjustment setting. Zero selects normal spacing. Selecting negative values tightens spacing to address run together letters, for example the case when UR RST prints as URRST. Positive values pull elements together, for example when an UR RST prints as URRST. Because this setting varies greatly depending on conditions, it is not stored in EEPROM but defaults to zero on power up. Spacing
Allowance can also be adjusted in Configuration Menu #4:CWR Spac. # **CWR Rx WPM Rate** The current received WPM rate is displayed on the left of status line. Speed is determined by the average width of received dits. This means that it can be misled by Farnsworth formatted CW. For example, if you copy W1AW code practice at 10 WPM, the K46 CWR will report a faster speed. Although ARRL code practice is sent at 10 WPM the individual elements are sent at a faster speed. # **CWR Rx Display** Morse decoded by the CWR is added to the receive text buffer and displayed in the RX display window. Since this is only three-line display, it is often necessary to scroll back to "review the log". The CWR always runs in the background decoding and buffering incoming Morse. So even if the display is scrolled back many lines, new incoming text is not missed. There are times when the CWR is not running: - 1. When the K46 is transmitting 2. The CWR is powered down - 3. RTTY mode is active - 4. During practice - 5. During WinKeyer mode # **Appendix C Firmware Upgrade** Following are general descriptions and they may have changed since this manual was written. Please download the latest Update Guide from the K46 Update Webpage to be sure you have the current instructions. There are three programmed microcontrollers in the K46 that can be updated in the field. This menu presents the options for updating. The three controllers are the K46 Console PIC, the WinKeyer3 controller, and the PSoC mixed signal controller. To start the upgrade menu, press **ESC** followed by **U**. Then press the number of the controller to be upgraded. If you then wish to continue, verify the selection by pressing a capital **Y**. ## DO NOT PRESS Y UNLESS YOU REALLY WANT TO UPGRADE!! All three devices are upgraded using one application on the PC namely, K46pgm Figure 36 – K46 PGM Main Dialog Box The app is divided into three groups, one for each controller, each updated separately. The procedures are slightly different for each controller. The K46 upgrade will be described first in detail followed by the WK3 IC and then the PSoC IC. #### K46 PIC Upgrade (please download the latest update guide from the K46 Update Webpage) On the PC, Start K46pgm and set the com port On the K46 enter: ESC U to show the Upgrade Menu, select 1 for K46, enter capital Y The K46 will then start the bootloader. On K46pgm, click OpenK46 and the current F/W revision is displayed. Click K46 Update Click Load Hex File and navigate to select the update file ending in .K46 #### After File has loaded, Click Update K46 PIC The new image will be installed: Click Restart K46 to reboot to the new image then Exits to close both dialog boxes. # WK3 Upgrade (please download the latest update guide from the K46 Update Webpage) This procedure is very similar to the K46 upgrade. On the PC, Start K46pgm and set the com port On the K46 enter: ESC U to show the Upgrade Menu, select 2 for WK3, enter capital Y Back to K46pgm: Click Open WK3 and it will report the WK3's current version Click WK3 Update Enter file name Click program When programming is done, WK will send an R Then press encoder to reboot WK It is now ready to go, no power cycle is needed #### **PSoC Upgrade** (please download the latest update guide from the K46 Update Webpage) On the PC, Start K46pgm and set the com port On the K46 enter: ESC U, 3, Y (must be capital Y) On K46pgm, click Open PSoC, the current PSoC rev will be displayed Click PSoC Update Click file and open the PSoC programming file Click Program When programming is done press the encoder on K46 This will reboot the PSoC, a power cycle is recommended. # Appendix D - Installing a CH340 USB Driver for the K46 As mentioned, don't plug your K46 in yet, we have to deal with the USB driver first. Unlike other K1EL keyers, the K46 uses the CH340 USB interface instead of FTDI. We find this interface to be very reliable and equal to or better than FTDI. For Windows, first thing to do is create a folder on your PC called CH340 or something similar, the name doesn't really matter. Then download CH341SER.exe and Windows-CH340-Driver.zip from https://www.k1elsystems.com/WKminiRevB.html and copy them into the new folder. Unzip the Windows-CH340-Driver.zip file. Now plug WKmini into your PC and wait to see if Windows Update will automatically search for a USB driver. This usually doesn't happen, but if it does click Skip obtaining driver.... Windows will then look on your local hard drive for the driver and will install it automatically. If Windows Update did not start, simply run CH341SER.exe and this dialog box will be displayed: Click Install and after a few minutes, the following message box will display: Now the PC is ready to operate as a USB host mode and communicate in Export GUI, WinKeyer, Dump Display Window, or firmware update mode. # **K46 Specifications** - Built-In USB Keyboard Interface - · Iambic CW Paddle Interface - PTT Output: Solid state relay +/- 300VDC - Key Output: Solid state relay +/- 300VDC - Outputs are optically isolated - · Adjustable lead in and tail delays - Adjustable Speed 5-149 WPM - · Adjustable Weighting - · Adjustable Keying Compensation - Built-In Sidetone Generator with - · On Board Speaker - 20 Character by 4 Row LCD Display - Rotary Encoder for fast WPM change - 12 Message memories - Message Pushbutton - · Operating Voltage: 5-volt USB - · WinKeyer Mode through - · USB Host interface - Current: < 120ma (lw/o keybd) 10ma standby - Embedded commands in messages - Iambic A, B, Ultimatic, and Straight Key - · Built in CW practice modes - Autospace - · First Dit/Dah adjustable correction - · Automatic paddle watchdog - Flexible Beacon Modes - · HSCW/QRSS Output Capability - Farnsworth speed mode - Extensive RFI and ESD filtering - · Keyboard Paddle - Fast Callsign Capture - · LCD contrast and backlight adjustment # **CWR Specifications** AF Input Level 100 mV minimum to 5V maximum peak to peak. Input Audio Filter 2 Pole PSoC Based Audio Filter 4 Pole Tone Decode Frequency 725 Hz Decode Method Quadrature Correlation Demodulation Decode Speed Range 10 to 45 WPM Tuning Indication 10 Level LCD frequency bar graph, auto squelch Gain Settings Eight gain levels Noise Filtering Eight Digital low pass filter settings Inter-element Spacing 10 Noise threshold levels ASR Mode Automatic display buffer toggle CWR Processor Cypress CY8C27243-24 PSoC Processor # Support and Warranty The K46 is fully warranted to the original purchaser against defects in materials and workmanship for one year after purchase. This warranty does not cover damage caused by accident, improper care, or lightning strikes. Please contact us before returning your K46 for repair and we will issue an RMA. Please submit questions by e-mail to k1el.kitsinfo@gmail.com Watch our website for latest updates and new products: http://www.k1el.com While every effort has been made to ensure that the K46 design is as complete and accurate as possible it is still possible to cause equipment damage or incur personal injury if: - 1) The K46 is not used as intended. - 2) Is connected incorrectly. - 3) Safety guidelines outlined in this document are not followed. - 4) The K46 is modified in any way. K1EL cannot be held responsible in these or other similar events. # **Table of Contents** | Introduction | 2 | |---|--------------| | List of K46 features | 2 | | LCD Display | 2 | | Status Line | | | Flash Status indicators | | | CW Reader Module (CWR) | | | K46 Window Modes | | | A40 Wildow Woodes | ა | | ASR (Automatic Send/Receive) | | | Fast Tx View | | | Display Window Adjustment Keys (apply to Rx and Tx windows only) | | | PGDN - Scroll Window Down | 4 | | PGUP - Scroll Window Up | 4 | | HOME - Go to the beginning of the text window | | | END - Go to end of text window | | | LCD Backlight and Contrast Adjustment | 1
1 | | Keyboard Commands | 1 | | ESC Commands | 4 | | ESC Confinances | 4 | | ESC B – Revert to Stored Defaults from EEPROM | | | ESC C - Configuration Mode | | | ESC D - Dump Display Buffer(s) | | | ESC G - Toggle Export GUI Enable | | | ESC H - ESC Help Menu | 6 | | ESC K - Key mapping Menu | 6 | | ESC L - Clear both display window buffers | 7 | | ESC M - Message Launcher Menu | | | ESC O - Start Low Power Standby | | | ESC P - Practice Mode | <i>1</i> | | EOU P - Friactice Mode | 1 | | ESC R - RTTY Setup Menu | | | ESC S – Save New Defaults | 8 | | ESC T - Serial Number Setup Menu (Cuts Editor) | 8 | | ESC U - Firmware Upgrade Menu | 8 | | ESC W - Start WinKeyer Mode | 8 | | WKCWR Mode | 9 | | Control Commands | | | CTL A (^A) - Reset CWR WPM - opposite of CTL M; CWR Rx WPM is set to Tx WPM | | | CTL B (^B) - Send 73 String (Bye) | | | CTL C (^C) - Start Fast Callsign Capture | | | | | | CTL D - (^D) Decrement Key Weighting | 9 | | CTL I - (^I) Increment Key Weighting | | | CTL E (^E) - Send Error Dits | 9 | | CTL H (^H) - Show Control Command Help Menu | | | CTL L (^L) - Clear currently displayed text window, either Rx or Tx | | | CTL M (^M) - Match Tx speed to CWR Rx speed | | | CTL N (^N) - Play Serial Number | 10 | | CTL Q (^Q) - Send CQ String | | | CTL R (^R) - Send RST Shortcut | 10 | | CTL T (^T) - Tune | | | CTL U (^U) - Change User | | | CTL U (^V) – Resync K46 Display | | | | | | CTL X (^X) - Insert Exchange Message | | | CTL Y (^Y) - Toggle Backlight On/Off | 10 | | CTL Z (^Z) - Reset CWR Settings to Defaults | | | Other Keyboard Commands | | | INS - Pause Transmit (Insert Key) | 10 | | DEL - Cancel Transmit Buffer (Delete Key) | | | Right & Left Arrow Keys – Increment or Decrement the Serial Number | | | Up and Down Arrow Keys - Change Transmit Speed Shortcut | | | CTL-Left & CTL-Right - CWR Audio Gain Adjustment | | | ALT-Left & ALT-Right - CWR Noise Filter Adjustment | | | CTL Up & CTL
Down - CWR Threshold Adjustment | | | VIE OD G VIE DOWII - OWN HIIGHIOU AUUSHIGHL | 1 ! | | ALT Up & ALT Down - CWR Spacing Adjustment | 1 | |--|-----------------------------| | ALT OP & ALT DOWN - CWK Spacing Adjustment | 1 | | SHIFT PGUP & SHIFT PGDN - Sidetone Frequency Adjust | 1 | | CTL PGUP & CTL PGDN - Sidetone Volume Adjust | | | Encoder Press - Power On and Off | 1 <i>¹</i> | | K46 Programmable Messages | | | Editing messages | 11 | | | | | Message Tag | | | Fast Callsign Capture Feature | | | Buffered message commands | 12 | | List of Buffered Commands | | | Jump to message (Buffered) | | | | | | Call a message (Buffered) | 13 | | Decrement Serial Number (Buffered) | | | Increment Serial Number (Buffered) | 13 | | Reset Speed (Buffered) | | | Set an HSCW Speed (Buffered) | 1' | | | | | Key down for nn seconds (Buffered) | | | Merge Two Letters into a Prosign (Buffered) | | | Send Serial Number (Buffered) | 14 | | Change Output Port (Buffered) | | | Pause Output (Buffered) | | | Set a QRSS Speed (Buffered) | | | Object Tanamit Canad in WIDM (Differed) | ۱4 | | Change Transmit Speed in WPM (Buffered) | | | Insert a delay (Buffered) | 18 | | Easy Beacon with exact timing (Buffered) | 1 <i>!</i> | | Message Key Display | 1! | | Practice Menu | | | Rx and Echo Practice Levels | | | | | | Receive Practice Mode | | | Echo Practice Mode | | | QSO Practice | 17 | | Contest QSO Practice | 18 | | RTTY Transmit Operation | | | CRLF handling | | | | | | RYRYRY Test | | | RTTY Setup | | | Miscellaneous Information | | | CTL-ALT-Enter Clear EEPROM and Restart | 2 ² | | CTL-ALT-DEL Software Restart | | | Paddle Watchdog | | | | | | Running the K46 without a keyboard | | | Using a Straight Key with the K46 | | | PTT Operation | 27 | | Sinewave Sidetone | 2: | | Built In Audio Splitter | | | Numeric Pad Operation Mode | | | | | | Numeric Pad Key Mapping Table | | | Command Key Assignments Chart | 24 | | Encoder Function Chart | 24 | | Buffered Message Command Chart | | | Escape and Control Key Command Chart | | | Appendix A – Configuration Menu Layouts and Descriptions | | | | Z' | | | | | Configuration Menu #1 | 20 | | Configuration Menu #1 | 20 | | Configuration Menu #1 | 20
20
20 | | Configuration Menu #1 | 20
20
20 | | Configuration Menu #1 | 26
26
26 | | Configuration Menu #1 | 20
20
20
20 | | Configuration Menu #1 | 26
26
26
26 | | Configuration Menu #1 | 26
26
26
27 | | Configuration Menu #1 | 20
26
26
27
27 | | Configuration Menu #1 | 20
26
26
27
27 | | Support and Warranty | 44 | |--|------------| | CWR Specifications | | | K46 Specifications | | | Appendix D - Installing a CH340 USB Driver for the K46 | | | PSoC Upgrade | | | WK3 Upgrade | | | K46 PIC Upgrade | | | Appendix C Firmware Upgrade | | | CWR Rx Display | | | CWR Rx WPM Rate | | | CWR Inter-letter Spacing Allowance | | | CWR Noise Floor Threshold Adjustment | | | CWR Low Pass Filtering | | | CWR Gain Adjustment | | | CWR Adjustments | | | CWR Tuning Display | | | CWR Basics | | | Audio Input for CWR Checkout | | | Audio Input for CWP Checkout | . აა | | Power it up | | | Transmitter Connection | | | Internal Sidetone Speaker | | | Power On/Off and Standby | | | Power Supply | . J∠ | | Which Keyboard to Use | | | Interconnection Diagram | | | Appendix B - K46 Modem Quick Start | . JI | | 8:WinKeyer - WinKeyer Mode Launcher | 31 | | 7:Word Wrap - Set Word Wrap On/Off | | | 6:ShowRevs - Display Firmware Revisions | | | 5:Serial # - Set Serial Number | | | 4:CW Prac - Practice Launcher | . 31 | | 3:Volts - Show Logic Supply Voltage | . 31 | | 2:WK CWR - Enable CWR Marquis Display in WinKeyer Mode | . 31 | | 1:BackLt - Set the LCD Backlight Intensity | | | Configuration Menu #5 | | | 7:CWR Thrsh - Set CWR Threshold | . J i | | 6:CWR Filt - Set CWR Noise Filter Level | 31 | | 5:CWR Gain - Set CWR Gain Level | 31 | | 4:CWR Pwr - Set CWR Power On/Off | 30 | | 3:NumPad – Numeric Keypad Mode | 30 | | 2:BLtimer– Backlight Timeout | | | 1:SineST – Enable Sinewave Sidetone | 30 | | Configuration Menu #4 | 30 | | 8:PDLwatch - Paddle Watchdog Control | | | 7:ST Freq - Set Sidetone Frequency (used for internal speaker or Sinetone module) | | | 6:STvolume - Set Sidetone Volume (used for internal speaker or Sinetone module) | | | 5:Sidetone - Turn Sidetone On/Off | | | 4:ASR - Automatic Send/Receive Window Control | 30 | | 3:Farnsw - Toggle Farnsworth Sending | 30 | | 2:1stExtn - Set 1 st Element Extension | 20 | | 1:DDratio - Set Dit/Dah Ratio (66 to 132%) | 20 | | Configuration Menu #3 | 20 | | 8:KeyrType - Select Paddle Mode | . ∠0 | | 6:PTT Tail - Set PTT Off Delay Time (0-99)
7:Tune 50% - Set Keying Duty Cycle for Tune Mode | . ∠0 | | 5:PTT Lead - Set PTT Lead-In Delay Time (0-99) | . ∠გ
ეი | | 4:OutPort - Modify Output Port | | | 3:PdlMute - Paddle Enable (Muting) Control | . ∠გ | | 2:PdlSwap - Swap Paddles | . 28 | | 1:Pai I one – Paddie Only Sidetone Enable | |